Metamath Proof Explorer


Theorem zmodfzp1

Description: An integer mod B lies in the first B + 1 nonnegative integers. (Contributed by AV, 27-Oct-2018)

Ref Expression
Assertion zmodfzp1 ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ( 0 ... 𝐵 ) )

Proof

Step Hyp Ref Expression
1 fzossfz ( 0 ..^ 𝐵 ) ⊆ ( 0 ... 𝐵 )
2 zmodfzo ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ( 0 ..^ 𝐵 ) )
3 1 2 sselid ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 mod 𝐵 ) ∈ ( 0 ... 𝐵 ) )