Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
2 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
3 |
|
modid2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
5 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
6 |
|
0z |
⊢ 0 ∈ ℤ |
7 |
|
elfzm11 |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
8 |
6 7
|
mpan |
⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
9 |
|
3anass |
⊢ ( ( 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
10 |
8 9
|
bitrdi |
⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) ) |
11 |
5 10
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) ) |
12 |
|
ibar |
⊢ ( 𝑀 ∈ ℤ → ( ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) ) |
13 |
12
|
bicomd |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 ∈ ℤ ∧ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ↔ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
14 |
11 13
|
sylan9bbr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ ( 0 ≤ 𝑀 ∧ 𝑀 < 𝑁 ) ) ) |
15 |
4 14
|
bitr4d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |