| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zmodid2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
| 2 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 3 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 6 |
5
|
eqcomd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 0 ... ( 𝑁 − 1 ) ) = ( 0 ..^ 𝑁 ) ) |
| 7 |
6
|
eleq2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↔ 𝑀 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 8 |
1 7
|
bitrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ 𝑀 ∈ ( 0 ..^ 𝑁 ) ) ) |