Description: Identity law for modulo restricted to integers. (Contributed by AV, 27-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | zmodidfzoimp | ⊢ ( 𝑀 ∈ ( 0 ..^ 𝑁 ) → ( 𝑀 mod 𝑁 ) = 𝑀 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 | ⊢ ( 𝑀 ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑀 < 𝑁 ) ) | |
2 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
3 | 2 | anim1i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
4 | 3 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑀 < 𝑁 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
5 | 1 4 | sylbi | ⊢ ( 𝑀 ∈ ( 0 ..^ 𝑁 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
6 | zmodidfzo | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 mod 𝑁 ) = 𝑀 ↔ 𝑀 ∈ ( 0 ..^ 𝑁 ) ) ) | |
7 | 6 | biimprd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∈ ( 0 ..^ 𝑁 ) → ( 𝑀 mod 𝑁 ) = 𝑀 ) ) |
8 | 5 7 | mpcom | ⊢ ( 𝑀 ∈ ( 0 ..^ 𝑁 ) → ( 𝑀 mod 𝑁 ) = 𝑀 ) |