Metamath Proof Explorer


Theorem znbas

Description: The base set of Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znbas.s 𝑆 = ( RSpan ‘ ℤring )
znbas.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
znbas.r 𝑅 = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) )
Assertion znbas ( 𝑁 ∈ ℕ0 → ( ℤ / 𝑅 ) = ( Base ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 znbas.s 𝑆 = ( RSpan ‘ ℤring )
2 znbas.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
3 znbas.r 𝑅 = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) )
4 eqidd ( 𝑁 ∈ ℕ0 → ( ℤring /s 𝑅 ) = ( ℤring /s 𝑅 ) )
5 zringbas ℤ = ( Base ‘ ℤring )
6 5 a1i ( 𝑁 ∈ ℕ0 → ℤ = ( Base ‘ ℤring ) )
7 3 ovexi 𝑅 ∈ V
8 7 a1i ( 𝑁 ∈ ℕ0𝑅 ∈ V )
9 zringring ring ∈ Ring
10 9 a1i ( 𝑁 ∈ ℕ0 → ℤring ∈ Ring )
11 4 6 8 10 qusbas ( 𝑁 ∈ ℕ0 → ( ℤ / 𝑅 ) = ( Base ‘ ( ℤring /s 𝑅 ) ) )
12 3 oveq2i ( ℤring /s 𝑅 ) = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
13 1 12 2 znbas2 ( 𝑁 ∈ ℕ0 → ( Base ‘ ( ℤring /s 𝑅 ) ) = ( Base ‘ 𝑌 ) )
14 11 13 eqtrd ( 𝑁 ∈ ℕ0 → ( ℤ / 𝑅 ) = ( Base ‘ 𝑌 ) )