Step |
Hyp |
Ref |
Expression |
1 |
|
znbas.s |
⊢ 𝑆 = ( RSpan ‘ ℤring ) |
2 |
|
znbas.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
3 |
|
znbas.r |
⊢ 𝑅 = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) |
4 |
|
eqidd |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤring /s 𝑅 ) = ( ℤring /s 𝑅 ) ) |
5 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ℤ = ( Base ‘ ℤring ) ) |
7 |
3
|
ovexi |
⊢ 𝑅 ∈ V |
8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 𝑅 ∈ V ) |
9 |
|
zringring |
⊢ ℤring ∈ Ring |
10 |
9
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ℤring ∈ Ring ) |
11 |
4 6 8 10
|
qusbas |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤ / 𝑅 ) = ( Base ‘ ( ℤring /s 𝑅 ) ) ) |
12 |
3
|
oveq2i |
⊢ ( ℤring /s 𝑅 ) = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
13 |
1 12 2
|
znbas2 |
⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ ( ℤring /s 𝑅 ) ) = ( Base ‘ 𝑌 ) ) |
14 |
11 13
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤ / 𝑅 ) = ( Base ‘ 𝑌 ) ) |