Metamath Proof Explorer


Theorem znbaslem

Description: Lemma for znbas . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by AV, 13-Jun-2019) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypotheses znval2.s 𝑆 = ( RSpan ‘ ℤring )
znval2.u 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
znval2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
znbaslem.e 𝐸 = Slot 𝐾
znbaslem.k 𝐾 ∈ ℕ
znbaslem.l 𝐾 < 1 0
Assertion znbaslem ( 𝑁 ∈ ℕ0 → ( 𝐸𝑈 ) = ( 𝐸𝑌 ) )

Proof

Step Hyp Ref Expression
1 znval2.s 𝑆 = ( RSpan ‘ ℤring )
2 znval2.u 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
3 znval2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
4 znbaslem.e 𝐸 = Slot 𝐾
5 znbaslem.k 𝐾 ∈ ℕ
6 znbaslem.l 𝐾 < 1 0
7 4 5 ndxid 𝐸 = Slot ( 𝐸 ‘ ndx )
8 5 nnrei 𝐾 ∈ ℝ
9 8 6 ltneii 𝐾 1 0
10 4 5 ndxarg ( 𝐸 ‘ ndx ) = 𝐾
11 plendx ( le ‘ ndx ) = 1 0
12 10 11 neeq12i ( ( 𝐸 ‘ ndx ) ≠ ( le ‘ ndx ) ↔ 𝐾 1 0 )
13 9 12 mpbir ( 𝐸 ‘ ndx ) ≠ ( le ‘ ndx )
14 7 13 setsnid ( 𝐸𝑈 ) = ( 𝐸 ‘ ( 𝑈 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑌 ) ⟩ ) )
15 eqid ( le ‘ 𝑌 ) = ( le ‘ 𝑌 )
16 1 2 3 15 znval2 ( 𝑁 ∈ ℕ0𝑌 = ( 𝑈 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑌 ) ⟩ ) )
17 16 fveq2d ( 𝑁 ∈ ℕ0 → ( 𝐸𝑌 ) = ( 𝐸 ‘ ( 𝑈 sSet ⟨ ( le ‘ ndx ) , ( le ‘ 𝑌 ) ⟩ ) ) )
18 14 17 eqtr4id ( 𝑁 ∈ ℕ0 → ( 𝐸𝑈 ) = ( 𝐸𝑌 ) )