Step |
Hyp |
Ref |
Expression |
1 |
|
znchr.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
1
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
3 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Ring ) |
5 |
|
nn0z |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ ) |
6 |
|
eqid |
⊢ ( chr ‘ 𝑌 ) = ( chr ‘ 𝑌 ) |
7 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
9 |
6 7 8
|
chrdvds |
⊢ ( ( 𝑌 ∈ Ring ∧ 𝑥 ∈ ℤ ) → ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) |
10 |
4 5 9
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ) → ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) |
11 |
1 7 8
|
zndvds0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑥 ) ) |
12 |
5 11
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑥 ) ) |
13 |
10 12
|
bitrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ) → ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥 ) ) |
14 |
13
|
ralrimiva |
⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑥 ∈ ℕ0 ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥 ) ) |
15 |
6
|
chrcl |
⊢ ( 𝑌 ∈ Ring → ( chr ‘ 𝑌 ) ∈ ℕ0 ) |
16 |
4 15
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( chr ‘ 𝑌 ) ∈ ℕ0 ) |
17 |
|
dvdsext |
⊢ ( ( ( chr ‘ 𝑌 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( chr ‘ 𝑌 ) = 𝑁 ↔ ∀ 𝑥 ∈ ℕ0 ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥 ) ) ) |
18 |
16 17
|
mpancom |
⊢ ( 𝑁 ∈ ℕ0 → ( ( chr ‘ 𝑌 ) = 𝑁 ↔ ∀ 𝑥 ∈ ℕ0 ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ 𝑁 ∥ 𝑥 ) ) ) |
19 |
14 18
|
mpbird |
⊢ ( 𝑁 ∈ ℕ0 → ( chr ‘ 𝑌 ) = 𝑁 ) |