Step |
Hyp |
Ref |
Expression |
1 |
|
zncrng.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
3 |
|
eqid |
⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) |
4 |
|
eqid |
⊢ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
5 |
3 4
|
zncrng2 |
⊢ ( 𝑁 ∈ ℤ → ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ∈ CRing ) |
6 |
2 5
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ∈ CRing ) |
7 |
|
eqidd |
⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) |
8 |
3 4 1
|
znbas2 |
⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ 𝑌 ) ) |
9 |
3 4 1
|
znadd |
⊢ ( 𝑁 ∈ ℕ0 → ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( +g ‘ 𝑌 ) ) |
10 |
9
|
oveqdr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) ) → ( 𝑥 ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) |
11 |
3 4 1
|
znmul |
⊢ ( 𝑁 ∈ ℕ0 → ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( .r ‘ 𝑌 ) ) |
12 |
11
|
oveqdr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) ) → ( 𝑥 ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ) |
13 |
7 8 10 12
|
crngpropd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ∈ CRing ↔ 𝑌 ∈ CRing ) ) |
14 |
6 13
|
mpbid |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |