Step |
Hyp |
Ref |
Expression |
1 |
|
zncyg.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
1
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
3 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Ring ) |
5 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
6 |
4 5
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Grp ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
8 |
|
eqid |
⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) |
9 |
7 8
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ) |
10 |
4 9
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ) |
11 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) |
12 |
|
eqid |
⊢ ( .g ‘ 𝑌 ) = ( .g ‘ 𝑌 ) |
13 |
11 12 8
|
zrhval2 |
⊢ ( 𝑌 ∈ Ring → ( ℤRHom ‘ 𝑌 ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
14 |
4 13
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
15 |
14
|
rneqd |
⊢ ( 𝑁 ∈ ℕ0 → ran ( ℤRHom ‘ 𝑌 ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
16 |
1 7 11
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
17 |
|
forn |
⊢ ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) → ran ( ℤRHom ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ran ( ℤRHom ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
19 |
15 18
|
eqtr3d |
⊢ ( 𝑁 ∈ ℕ0 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( Base ‘ 𝑌 ) ) |
20 |
|
oveq2 |
⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) = ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) |
21 |
20
|
mpteq2dv |
⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
22 |
21
|
rneqd |
⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) |
23 |
22
|
eqeq1d |
⊢ ( 𝑥 = ( 1r ‘ 𝑌 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( Base ‘ 𝑌 ) ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( Base ‘ 𝑌 ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( ( 1r ‘ 𝑌 ) ∈ ( Base ‘ 𝑌 ) ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) = ( Base ‘ 𝑌 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝑌 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( Base ‘ 𝑌 ) ) |
25 |
10 19 24
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ∃ 𝑥 ∈ ( Base ‘ 𝑌 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( Base ‘ 𝑌 ) ) |
26 |
7 12
|
iscyg |
⊢ ( 𝑌 ∈ CycGrp ↔ ( 𝑌 ∈ Grp ∧ ∃ 𝑥 ∈ ( Base ‘ 𝑌 ) ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑌 ) 𝑥 ) ) = ( Base ‘ 𝑌 ) ) ) |
27 |
6 25 26
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CycGrp ) |