Step |
Hyp |
Ref |
Expression |
1 |
|
zncyg.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
zndvds.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
3 |
|
eqcom |
⊢ ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 𝐵 ) ↔ ( 𝐿 ‘ 𝐵 ) = ( 𝐿 ‘ 𝐴 ) ) |
4 |
|
eqid |
⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) |
5 |
|
eqid |
⊢ ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) = ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) |
6 |
4 5 1 2
|
znzrhval |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ) → ( 𝐿 ‘ 𝐵 ) = [ 𝐵 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐿 ‘ 𝐵 ) = [ 𝐵 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
8 |
4 5 1 2
|
znzrhval |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐿 ‘ 𝐴 ) = [ 𝐴 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐿 ‘ 𝐴 ) = [ 𝐴 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐵 ) = ( 𝐿 ‘ 𝐴 ) ↔ [ 𝐵 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) = [ 𝐴 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
11 |
|
zringring |
⊢ ℤring ∈ Ring |
12 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
14 |
13
|
snssd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → { 𝑁 } ⊆ ℤ ) |
15 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
16 |
|
eqid |
⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) |
17 |
4 15 16
|
rspcl |
⊢ ( ( ℤring ∈ Ring ∧ { 𝑁 } ⊆ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
18 |
11 14 17
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
19 |
16
|
lidlsubg |
⊢ ( ( ℤring ∈ Ring ∧ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( SubGrp ‘ ℤring ) ) |
20 |
11 18 19
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( SubGrp ‘ ℤring ) ) |
21 |
15 5
|
eqger |
⊢ ( ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( SubGrp ‘ ℤring ) → ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) Er ℤ ) |
22 |
20 21
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) Er ℤ ) |
23 |
|
simp3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
24 |
22 23
|
erth |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) 𝐴 ↔ [ 𝐵 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) = [ 𝐴 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
25 |
|
zringabl |
⊢ ℤring ∈ Abel |
26 |
15 16
|
lidlss |
⊢ ( ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ℤ ) |
27 |
18 26
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ℤ ) |
28 |
|
eqid |
⊢ ( -g ‘ ℤring ) = ( -g ‘ ℤring ) |
29 |
15 28 5
|
eqgabl |
⊢ ( ( ℤring ∈ Abel ∧ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ⊆ ℤ ) → ( 𝐵 ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) 𝐴 ↔ ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
30 |
25 27 29
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) 𝐴 ↔ ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
31 |
|
simp2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
32 |
23 31
|
jca |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
33 |
32
|
biantrurd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ↔ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
34 |
|
df-3an |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ↔ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
35 |
33 34
|
bitr4di |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
36 |
|
zsubrg |
⊢ ℤ ∈ ( SubRing ‘ ℂfld ) |
37 |
|
subrgsubg |
⊢ ( ℤ ∈ ( SubRing ‘ ℂfld ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) |
38 |
36 37
|
mp1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ℤ ∈ ( SubGrp ‘ ℂfld ) ) |
39 |
|
cnfldsub |
⊢ − = ( -g ‘ ℂfld ) |
40 |
|
df-zring |
⊢ ℤring = ( ℂfld ↾s ℤ ) |
41 |
39 40 28
|
subgsub |
⊢ ( ( ℤ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ) |
42 |
38 41
|
syld3an1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ) |
43 |
42
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
44 |
|
dvdsrzring |
⊢ ∥ = ( ∥r ‘ ℤring ) |
45 |
15 4 44
|
rspsn |
⊢ ( ( ℤring ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
46 |
11 13 45
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) = { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) |
47 |
43 46
|
eleq12d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ↔ ( 𝐴 − 𝐵 ) ∈ { 𝑥 ∣ 𝑁 ∥ 𝑥 } ) ) |
48 |
|
ovex |
⊢ ( 𝐴 − 𝐵 ) ∈ V |
49 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐴 − 𝐵 ) → ( 𝑁 ∥ 𝑥 ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |
50 |
48 49
|
elab |
⊢ ( ( 𝐴 − 𝐵 ) ∈ { 𝑥 ∣ 𝑁 ∥ 𝑥 } ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) |
51 |
47 50
|
bitrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ( -g ‘ ℤring ) 𝐵 ) ∈ ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |
52 |
30 35 51
|
3bitr2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) 𝐴 ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |
53 |
10 24 52
|
3bitr2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐵 ) = ( 𝐿 ‘ 𝐴 ) ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |
54 |
3 53
|
syl5bb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 𝐵 ) ↔ 𝑁 ∥ ( 𝐴 − 𝐵 ) ) ) |