Step |
Hyp |
Ref |
Expression |
1 |
|
zncyg.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
zndvds.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
3 |
|
zndvds0.3 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
4 |
|
0z |
⊢ 0 ∈ ℤ |
5 |
1 2
|
zndvds |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 0 ) ↔ 𝑁 ∥ ( 𝐴 − 0 ) ) ) |
6 |
4 5
|
mp3an3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 0 ) ↔ 𝑁 ∥ ( 𝐴 − 0 ) ) ) |
7 |
1
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
8 |
7
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → 𝑌 ∈ CRing ) |
9 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
10 |
2
|
zrhrhm |
⊢ ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
11 |
8 9 10
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
12 |
|
rhmghm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
13 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
14 |
13 3
|
ghmid |
⊢ ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) → ( 𝐿 ‘ 0 ) = 0 ) |
15 |
11 12 14
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐿 ‘ 0 ) = 0 ) |
16 |
15
|
eqeq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = ( 𝐿 ‘ 0 ) ↔ ( 𝐿 ‘ 𝐴 ) = 0 ) ) |
17 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
18 |
17
|
zcnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
19 |
18
|
subid1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐴 − 0 ) = 𝐴 ) |
20 |
19
|
breq2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝑁 ∥ ( 𝐴 − 0 ) ↔ 𝑁 ∥ 𝐴 ) ) |
21 |
6 16 20
|
3bitr3d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐴 ) = 0 ↔ 𝑁 ∥ 𝐴 ) ) |