Metamath Proof Explorer
Description: Closure law for negative integers. (Contributed by NM, 9-May-2004)
|
|
Ref |
Expression |
|
Assertion |
znegcl |
⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elz |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
2 |
|
negeq |
⊢ ( 𝑁 = 0 → - 𝑁 = - 0 ) |
3 |
|
neg0 |
⊢ - 0 = 0 |
4 |
2 3
|
eqtrdi |
⊢ ( 𝑁 = 0 → - 𝑁 = 0 ) |
5 |
|
0z |
⊢ 0 ∈ ℤ |
6 |
4 5
|
eqeltrdi |
⊢ ( 𝑁 = 0 → - 𝑁 ∈ ℤ ) |
7 |
|
nnnegz |
⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) |
8 |
|
nnz |
⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) |
9 |
6 7 8
|
3jaoi |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) → - 𝑁 ∈ ℤ ) |
10 |
1 9
|
simplbiim |
⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) |