Metamath Proof Explorer


Theorem znegcld

Description: Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis zred.1 ( 𝜑𝐴 ∈ ℤ )
Assertion znegcld ( 𝜑 → - 𝐴 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 zred.1 ( 𝜑𝐴 ∈ ℤ )
2 znegcl ( 𝐴 ∈ ℤ → - 𝐴 ∈ ℤ )
3 1 2 syl ( 𝜑 → - 𝐴 ∈ ℤ )