Metamath Proof Explorer


Theorem znfi

Description: The Z/nZ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses zntos.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
znhash.1 𝐵 = ( Base ‘ 𝑌 )
Assertion znfi ( 𝑁 ∈ ℕ → 𝐵 ∈ Fin )

Proof

Step Hyp Ref Expression
1 zntos.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
2 znhash.1 𝐵 = ( Base ‘ 𝑌 )
3 1 2 znhash ( 𝑁 ∈ ℕ → ( ♯ ‘ 𝐵 ) = 𝑁 )
4 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
5 3 4 eqeltrd ( 𝑁 ∈ ℕ → ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
6 2 fvexi 𝐵 ∈ V
7 hashclb ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) )
8 6 7 ax-mp ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 )
9 5 8 sylibr ( 𝑁 ∈ ℕ → 𝐵 ∈ Fin )