| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zntos.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 2 |  | prmnn | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 | 1 | zncrng | ⊢ ( 𝑁  ∈  ℕ0  →  𝑌  ∈  CRing ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑁  ∈  ℙ  →  𝑌  ∈  CRing ) | 
						
							| 7 |  | crngring | ⊢ ( 𝑌  ∈  CRing  →  𝑌  ∈  Ring ) | 
						
							| 8 | 2 3 5 7 | 4syl | ⊢ ( 𝑁  ∈  ℙ  →  𝑌  ∈  Ring ) | 
						
							| 9 |  | hash2 | ⊢ ( ♯ ‘ 2o )  =  2 | 
						
							| 10 |  | prmuz2 | ⊢ ( 𝑁  ∈  ℙ  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 11 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  2  ≤  𝑁 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑁  ∈  ℙ  →  2  ≤  𝑁 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 14 | 1 13 | znhash | ⊢ ( 𝑁  ∈  ℕ  →  ( ♯ ‘ ( Base ‘ 𝑌 ) )  =  𝑁 ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝑁  ∈  ℙ  →  ( ♯ ‘ ( Base ‘ 𝑌 ) )  =  𝑁 ) | 
						
							| 16 | 12 15 | breqtrrd | ⊢ ( 𝑁  ∈  ℙ  →  2  ≤  ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) | 
						
							| 17 | 9 16 | eqbrtrid | ⊢ ( 𝑁  ∈  ℙ  →  ( ♯ ‘ 2o )  ≤  ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) | 
						
							| 18 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 19 |  | nnfi | ⊢ ( 2o  ∈  ω  →  2o  ∈  Fin ) | 
						
							| 20 | 18 19 | ax-mp | ⊢ 2o  ∈  Fin | 
						
							| 21 |  | fvex | ⊢ ( Base ‘ 𝑌 )  ∈  V | 
						
							| 22 |  | hashdom | ⊢ ( ( 2o  ∈  Fin  ∧  ( Base ‘ 𝑌 )  ∈  V )  →  ( ( ♯ ‘ 2o )  ≤  ( ♯ ‘ ( Base ‘ 𝑌 ) )  ↔  2o  ≼  ( Base ‘ 𝑌 ) ) ) | 
						
							| 23 | 20 21 22 | mp2an | ⊢ ( ( ♯ ‘ 2o )  ≤  ( ♯ ‘ ( Base ‘ 𝑌 ) )  ↔  2o  ≼  ( Base ‘ 𝑌 ) ) | 
						
							| 24 | 17 23 | sylib | ⊢ ( 𝑁  ∈  ℙ  →  2o  ≼  ( Base ‘ 𝑌 ) ) | 
						
							| 25 | 13 | isnzr2 | ⊢ ( 𝑌  ∈  NzRing  ↔  ( 𝑌  ∈  Ring  ∧  2o  ≼  ( Base ‘ 𝑌 ) ) ) | 
						
							| 26 | 8 24 25 | sylanbrc | ⊢ ( 𝑁  ∈  ℙ  →  𝑌  ∈  NzRing ) | 
						
							| 27 |  | eqid | ⊢ ( ℤRHom ‘ 𝑌 )  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 28 | 1 13 27 | znzrhfo | ⊢ ( 𝑁  ∈  ℕ0  →  ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 29 | 4 28 | syl | ⊢ ( 𝑁  ∈  ℙ  →  ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 30 |  | foelrn | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 )  ∧  𝑥  ∈  ( Base ‘ 𝑌 ) )  →  ∃ 𝑧  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ) | 
						
							| 31 |  | foelrn | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 ) )  →  ∃ 𝑤  ∈  ℤ 𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) | 
						
							| 32 | 30 31 | anim12dan | ⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ∃ 𝑧  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  ∃ 𝑤  ∈  ℤ 𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) | 
						
							| 33 | 29 32 | sylan | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ∃ 𝑧  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  ∃ 𝑤  ∈  ℤ 𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) | 
						
							| 34 |  | reeanv | ⊢ ( ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  ↔  ( ∃ 𝑧  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  ∃ 𝑤  ∈  ℤ 𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) | 
						
							| 35 |  | euclemma | ⊢ ( ( 𝑁  ∈  ℙ  ∧  𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ )  →  ( 𝑁  ∥  ( 𝑧  ·  𝑤 )  ↔  ( 𝑁  ∥  𝑧  ∨  𝑁  ∥  𝑤 ) ) ) | 
						
							| 36 | 35 | 3expb | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( 𝑁  ∥  ( 𝑧  ·  𝑤 )  ↔  ( 𝑁  ∥  𝑧  ∨  𝑁  ∥  𝑤 ) ) ) | 
						
							| 37 | 8 | adantr | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  𝑌  ∈  Ring ) | 
						
							| 38 | 27 | zrhrhm | ⊢ ( 𝑌  ∈  Ring  →  ( ℤRHom ‘ 𝑌 )  ∈  ( ℤring  RingHom  𝑌 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ℤRHom ‘ 𝑌 )  ∈  ( ℤring  RingHom  𝑌 ) ) | 
						
							| 40 |  | simprl | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  𝑧  ∈  ℤ ) | 
						
							| 41 |  | simprr | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  𝑤  ∈  ℤ ) | 
						
							| 42 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 43 |  | zringmulr | ⊢  ·   =  ( .r ‘ ℤring ) | 
						
							| 44 |  | eqid | ⊢ ( .r ‘ 𝑌 )  =  ( .r ‘ 𝑌 ) | 
						
							| 45 | 42 43 44 | rhmmul | ⊢ ( ( ( ℤRHom ‘ 𝑌 )  ∈  ( ℤring  RingHom  𝑌 )  ∧  𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ )  →  ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧  ·  𝑤 ) )  =  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) | 
						
							| 46 | 39 40 41 45 | syl3anc | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧  ·  𝑤 ) )  =  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) | 
						
							| 47 | 46 | eqeq1d | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧  ·  𝑤 ) )  =  ( 0g ‘ 𝑌 )  ↔  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  =  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 48 |  | zmulcl | ⊢ ( ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ )  →  ( 𝑧  ·  𝑤 )  ∈  ℤ ) | 
						
							| 49 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 50 | 1 27 49 | zndvds0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑧  ·  𝑤 )  ∈  ℤ )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧  ·  𝑤 ) )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  ( 𝑧  ·  𝑤 ) ) ) | 
						
							| 51 | 4 48 50 | syl2an | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧  ·  𝑤 ) )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  ( 𝑧  ·  𝑤 ) ) ) | 
						
							| 52 | 47 51 | bitr3d | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  ( 𝑧  ·  𝑤 ) ) ) | 
						
							| 53 | 1 27 49 | zndvds0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑧  ∈  ℤ )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  𝑧 ) ) | 
						
							| 54 | 4 40 53 | syl2an2r | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  𝑧 ) ) | 
						
							| 55 | 1 27 49 | zndvds0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑤  ∈  ℤ )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  𝑤 ) ) | 
						
							| 56 | 4 41 55 | syl2an2r | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  =  ( 0g ‘ 𝑌 )  ↔  𝑁  ∥  𝑤 ) ) | 
						
							| 57 | 54 56 | orbi12d | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ∨  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  =  ( 0g ‘ 𝑌 ) )  ↔  ( 𝑁  ∥  𝑧  ∨  𝑁  ∥  𝑤 ) ) ) | 
						
							| 58 | 36 52 57 | 3bitr4d | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  =  ( 0g ‘ 𝑌 )  ↔  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ∨  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 59 | 58 | biimpd | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  =  ( 0g ‘ 𝑌 )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ∨  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 60 |  | oveq12 | ⊢ ( ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  →  ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) | 
						
							| 61 | 60 | eqeq1d | ⊢ ( ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( 0g ‘ 𝑌 )  ↔  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  =  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 62 |  | eqeq1 | ⊢ ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  →  ( 𝑥  =  ( 0g ‘ 𝑌 )  ↔  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 63 | 62 | orbi1d | ⊢ ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  →  ( ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) )  ↔  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 64 |  | eqeq1 | ⊢ ( 𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  →  ( 𝑦  =  ( 0g ‘ 𝑌 )  ↔  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  =  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 65 | 64 | orbi2d | ⊢ ( 𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  →  ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) )  ↔  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ∨  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 66 | 63 65 | sylan9bb | ⊢ ( ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  →  ( ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) )  ↔  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ∨  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 67 | 61 66 | imbi12d | ⊢ ( ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  →  ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( 0g ‘ 𝑌 )  →  ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) ) )  ↔  ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  =  ( 0g ‘ 𝑌 )  →  ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  =  ( 0g ‘ 𝑌 )  ∨  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 )  =  ( 0g ‘ 𝑌 ) ) ) ) ) | 
						
							| 68 | 59 67 | syl5ibrcom | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑤  ∈  ℤ ) )  →  ( ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( 0g ‘ 𝑌 )  →  ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) ) ) ) ) | 
						
							| 69 | 68 | rexlimdvva | ⊢ ( 𝑁  ∈  ℙ  →  ( ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ ( 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( 0g ‘ 𝑌 )  →  ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) ) ) ) ) | 
						
							| 70 | 34 69 | biimtrrid | ⊢ ( 𝑁  ∈  ℙ  →  ( ( ∃ 𝑧  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  ∃ 𝑤  ∈  ℤ 𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( 0g ‘ 𝑌 )  →  ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) ) ) ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( ∃ 𝑧  ∈  ℤ 𝑥  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 )  ∧  ∃ 𝑤  ∈  ℤ 𝑦  =  ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( 0g ‘ 𝑌 )  →  ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 72 | 33 71 | syldan | ⊢ ( ( 𝑁  ∈  ℙ  ∧  ( 𝑥  ∈  ( Base ‘ 𝑌 )  ∧  𝑦  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( 0g ‘ 𝑌 )  →  ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 73 | 72 | ralrimivva | ⊢ ( 𝑁  ∈  ℙ  →  ∀ 𝑥  ∈  ( Base ‘ 𝑌 ) ∀ 𝑦  ∈  ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( 0g ‘ 𝑌 )  →  ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 74 | 13 44 49 | isdomn | ⊢ ( 𝑌  ∈  Domn  ↔  ( 𝑌  ∈  NzRing  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑌 ) ∀ 𝑦  ∈  ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 )  =  ( 0g ‘ 𝑌 )  →  ( 𝑥  =  ( 0g ‘ 𝑌 )  ∨  𝑦  =  ( 0g ‘ 𝑌 ) ) ) ) ) | 
						
							| 75 | 26 73 74 | sylanbrc | ⊢ ( 𝑁  ∈  ℙ  →  𝑌  ∈  Domn ) | 
						
							| 76 |  | isidom | ⊢ ( 𝑌  ∈  IDomn  ↔  ( 𝑌  ∈  CRing  ∧  𝑌  ∈  Domn ) ) | 
						
							| 77 | 6 75 76 | sylanbrc | ⊢ ( 𝑁  ∈  ℙ  →  𝑌  ∈  IDomn ) | 
						
							| 78 | 1 13 | znfi | ⊢ ( 𝑁  ∈  ℕ  →  ( Base ‘ 𝑌 )  ∈  Fin ) | 
						
							| 79 | 2 78 | syl | ⊢ ( 𝑁  ∈  ℙ  →  ( Base ‘ 𝑌 )  ∈  Fin ) | 
						
							| 80 | 13 | fiidomfld | ⊢ ( ( Base ‘ 𝑌 )  ∈  Fin  →  ( 𝑌  ∈  IDomn  ↔  𝑌  ∈  Field ) ) | 
						
							| 81 | 79 80 | syl | ⊢ ( 𝑁  ∈  ℙ  →  ( 𝑌  ∈  IDomn  ↔  𝑌  ∈  Field ) ) | 
						
							| 82 | 77 81 | mpbid | ⊢ ( 𝑁  ∈  ℙ  →  𝑌  ∈  Field ) |