Step |
Hyp |
Ref |
Expression |
1 |
|
zntos.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
prmnn |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ ) |
3 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ0 ) |
5 |
1
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
6 |
4 5
|
syl |
⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ CRing ) |
7 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
8 |
2 3 5 7
|
4syl |
⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ Ring ) |
9 |
|
hash2 |
⊢ ( ♯ ‘ 2o ) = 2 |
10 |
|
prmuz2 |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
11 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝑁 ) |
12 |
10 11
|
syl |
⊢ ( 𝑁 ∈ ℙ → 2 ≤ 𝑁 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
14 |
1 13
|
znhash |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( Base ‘ 𝑌 ) ) = 𝑁 ) |
15 |
2 14
|
syl |
⊢ ( 𝑁 ∈ ℙ → ( ♯ ‘ ( Base ‘ 𝑌 ) ) = 𝑁 ) |
16 |
12 15
|
breqtrrd |
⊢ ( 𝑁 ∈ ℙ → 2 ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) |
17 |
9 16
|
eqbrtrid |
⊢ ( 𝑁 ∈ ℙ → ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) |
18 |
|
2onn |
⊢ 2o ∈ ω |
19 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
20 |
18 19
|
ax-mp |
⊢ 2o ∈ Fin |
21 |
|
fvex |
⊢ ( Base ‘ 𝑌 ) ∈ V |
22 |
|
hashdom |
⊢ ( ( 2o ∈ Fin ∧ ( Base ‘ 𝑌 ) ∈ V ) → ( ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ↔ 2o ≼ ( Base ‘ 𝑌 ) ) ) |
23 |
20 21 22
|
mp2an |
⊢ ( ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ↔ 2o ≼ ( Base ‘ 𝑌 ) ) |
24 |
17 23
|
sylib |
⊢ ( 𝑁 ∈ ℙ → 2o ≼ ( Base ‘ 𝑌 ) ) |
25 |
13
|
isnzr2 |
⊢ ( 𝑌 ∈ NzRing ↔ ( 𝑌 ∈ Ring ∧ 2o ≼ ( Base ‘ 𝑌 ) ) ) |
26 |
8 24 25
|
sylanbrc |
⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ NzRing ) |
27 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) |
28 |
1 13 27
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
29 |
4 28
|
syl |
⊢ ( 𝑁 ∈ ℙ → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
30 |
|
foelrn |
⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ) |
31 |
|
foelrn |
⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) |
32 |
30 31
|
anim12dan |
⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ) ) → ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
33 |
29 32
|
sylan |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ) ) → ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
34 |
|
reeanv |
⊢ ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ↔ ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
35 |
|
euclemma |
⊢ ( ( 𝑁 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( 𝑁 ∥ ( 𝑧 · 𝑤 ) ↔ ( 𝑁 ∥ 𝑧 ∨ 𝑁 ∥ 𝑤 ) ) ) |
36 |
35
|
3expb |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( 𝑁 ∥ ( 𝑧 · 𝑤 ) ↔ ( 𝑁 ∥ 𝑧 ∨ 𝑁 ∥ 𝑤 ) ) ) |
37 |
8
|
adantr |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → 𝑌 ∈ Ring ) |
38 |
27
|
zrhrhm |
⊢ ( 𝑌 ∈ Ring → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
40 |
|
simprl |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → 𝑧 ∈ ℤ ) |
41 |
|
simprr |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → 𝑤 ∈ ℤ ) |
42 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
43 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
44 |
|
eqid |
⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) |
45 |
42 43 44
|
rhmmul |
⊢ ( ( ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ∧ 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
46 |
39 40 41 45
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
47 |
46
|
eqeq1d |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) ) ) |
48 |
|
zmulcl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( 𝑧 · 𝑤 ) ∈ ℤ ) |
49 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
50 |
1 27 49
|
zndvds0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑧 · 𝑤 ) ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑧 · 𝑤 ) ) ) |
51 |
4 48 50
|
syl2an |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑧 · 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑧 · 𝑤 ) ) ) |
52 |
47 51
|
bitr3d |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑧 · 𝑤 ) ) ) |
53 |
1 27 49
|
zndvds0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑧 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑧 ) ) |
54 |
4 40 53
|
syl2an2r |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑧 ) ) |
55 |
1 27 49
|
zndvds0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑤 ) ) |
56 |
4 41 55
|
syl2an2r |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑤 ) ) |
57 |
54 56
|
orbi12d |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ↔ ( 𝑁 ∥ 𝑧 ∨ 𝑁 ∥ 𝑤 ) ) ) |
58 |
36 52 57
|
3bitr4d |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) |
59 |
58
|
biimpd |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) |
60 |
|
oveq12 |
⊢ ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) |
61 |
60
|
eqeq1d |
⊢ ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) ) ) |
62 |
|
eqeq1 |
⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ) ) |
63 |
62
|
orbi1d |
⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) → ( ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) |
64 |
|
eqeq1 |
⊢ ( 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) → ( 𝑦 = ( 0g ‘ 𝑌 ) ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) |
65 |
64
|
orbi2d |
⊢ ( 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) |
66 |
63 65
|
sylan9bb |
⊢ ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) |
67 |
61 66
|
imbi12d |
⊢ ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ↔ ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) = ( 0g ‘ 𝑌 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) = ( 0g ‘ 𝑌 ) ) ) ) ) |
68 |
59 67
|
syl5ibrcom |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) ) |
69 |
68
|
rexlimdvva |
⊢ ( 𝑁 ∈ ℙ → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) ) |
70 |
34 69
|
syl5bir |
⊢ ( 𝑁 ∈ ℙ → ( ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) ) |
71 |
70
|
imp |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( ∃ 𝑧 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑧 ) ∧ ∃ 𝑤 ∈ ℤ 𝑦 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑤 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) |
72 |
33 71
|
syldan |
⊢ ( ( 𝑁 ∈ ℙ ∧ ( 𝑥 ∈ ( Base ‘ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) |
73 |
72
|
ralrimivva |
⊢ ( 𝑁 ∈ ℙ → ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) |
74 |
13 44 49
|
isdomn |
⊢ ( 𝑌 ∈ Domn ↔ ( 𝑌 ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑌 ) ∀ 𝑦 ∈ ( Base ‘ 𝑌 ) ( ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) = ( 0g ‘ 𝑌 ) → ( 𝑥 = ( 0g ‘ 𝑌 ) ∨ 𝑦 = ( 0g ‘ 𝑌 ) ) ) ) ) |
75 |
26 73 74
|
sylanbrc |
⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ Domn ) |
76 |
|
isidom |
⊢ ( 𝑌 ∈ IDomn ↔ ( 𝑌 ∈ CRing ∧ 𝑌 ∈ Domn ) ) |
77 |
6 75 76
|
sylanbrc |
⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ IDomn ) |
78 |
1 13
|
znfi |
⊢ ( 𝑁 ∈ ℕ → ( Base ‘ 𝑌 ) ∈ Fin ) |
79 |
2 78
|
syl |
⊢ ( 𝑁 ∈ ℙ → ( Base ‘ 𝑌 ) ∈ Fin ) |
80 |
13
|
fiidomfld |
⊢ ( ( Base ‘ 𝑌 ) ∈ Fin → ( 𝑌 ∈ IDomn ↔ 𝑌 ∈ Field ) ) |
81 |
79 80
|
syl |
⊢ ( 𝑁 ∈ ℙ → ( 𝑌 ∈ IDomn ↔ 𝑌 ∈ Field ) ) |
82 |
77 81
|
mpbid |
⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ Field ) |