Step |
Hyp |
Ref |
Expression |
1 |
|
zntos.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
2z |
⊢ 2 ∈ ℤ |
3 |
2
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 2 ∈ ℤ ) |
4 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
5 |
4
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 𝑁 ∈ ℤ ) |
6 |
|
hash2 |
⊢ ( ♯ ‘ 2o ) = 2 |
7 |
|
isidom |
⊢ ( 𝑌 ∈ IDomn ↔ ( 𝑌 ∈ CRing ∧ 𝑌 ∈ Domn ) ) |
8 |
7
|
simprbi |
⊢ ( 𝑌 ∈ IDomn → 𝑌 ∈ Domn ) |
9 |
|
domnnzr |
⊢ ( 𝑌 ∈ Domn → 𝑌 ∈ NzRing ) |
10 |
8 9
|
syl |
⊢ ( 𝑌 ∈ IDomn → 𝑌 ∈ NzRing ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
12 |
11
|
isnzr2 |
⊢ ( 𝑌 ∈ NzRing ↔ ( 𝑌 ∈ Ring ∧ 2o ≼ ( Base ‘ 𝑌 ) ) ) |
13 |
12
|
simprbi |
⊢ ( 𝑌 ∈ NzRing → 2o ≼ ( Base ‘ 𝑌 ) ) |
14 |
10 13
|
syl |
⊢ ( 𝑌 ∈ IDomn → 2o ≼ ( Base ‘ 𝑌 ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 2o ≼ ( Base ‘ 𝑌 ) ) |
16 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
17 |
|
prfi |
⊢ { ∅ , { ∅ } } ∈ Fin |
18 |
16 17
|
eqeltri |
⊢ 2o ∈ Fin |
19 |
|
fvex |
⊢ ( Base ‘ 𝑌 ) ∈ V |
20 |
|
hashdom |
⊢ ( ( 2o ∈ Fin ∧ ( Base ‘ 𝑌 ) ∈ V ) → ( ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ↔ 2o ≼ ( Base ‘ 𝑌 ) ) ) |
21 |
18 19 20
|
mp2an |
⊢ ( ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ↔ 2o ≼ ( Base ‘ 𝑌 ) ) |
22 |
15 21
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → ( ♯ ‘ 2o ) ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) |
23 |
6 22
|
eqbrtrrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 2 ≤ ( ♯ ‘ ( Base ‘ 𝑌 ) ) ) |
24 |
1 11
|
znhash |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( Base ‘ 𝑌 ) ) = 𝑁 ) |
25 |
24
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → ( ♯ ‘ ( Base ‘ 𝑌 ) ) = 𝑁 ) |
26 |
23 25
|
breqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 2 ≤ 𝑁 ) |
27 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) |
28 |
3 5 26 27
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
29 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
30 |
29
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∈ ℂ ) |
31 |
|
nncn |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) |
32 |
31
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∈ ℂ ) |
33 |
|
nnne0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ≠ 0 ) |
34 |
33
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ≠ 0 ) |
35 |
30 32 34
|
divcan1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( 𝑁 / 𝑥 ) · 𝑥 ) = 𝑁 ) |
36 |
35
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( ( 𝑁 / 𝑥 ) · 𝑥 ) ) = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑁 ) ) |
37 |
8
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑌 ∈ Domn ) |
38 |
|
domnring |
⊢ ( 𝑌 ∈ Domn → 𝑌 ∈ Ring ) |
39 |
37 38
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑌 ∈ Ring ) |
40 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) |
41 |
40
|
zrhrhm |
⊢ ( 𝑌 ∈ Ring → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
42 |
39 41
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
43 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∥ 𝑁 ) |
44 |
|
nnz |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) |
45 |
44
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∈ ℤ ) |
46 |
4
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
47 |
|
dvdsval2 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑁 / 𝑥 ) ∈ ℤ ) ) |
48 |
45 34 46 47
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑁 / 𝑥 ) ∈ ℤ ) ) |
49 |
43 48
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 / 𝑥 ) ∈ ℤ ) |
50 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
51 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
52 |
|
eqid |
⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) |
53 |
50 51 52
|
rhmmul |
⊢ ( ( ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ∧ ( 𝑁 / 𝑥 ) ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( ( 𝑁 / 𝑥 ) · 𝑥 ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) ) |
54 |
42 49 45 53
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( ( 𝑁 / 𝑥 ) · 𝑥 ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) ) |
55 |
|
iddvds |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 𝑁 ) |
56 |
46 55
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∥ 𝑁 ) |
57 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
59 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
60 |
1 40 59
|
zndvds0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑁 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑁 ) ) |
61 |
58 46 60
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑁 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑁 ) ) |
62 |
56 61
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑁 ) = ( 0g ‘ 𝑌 ) ) |
63 |
36 54 62
|
3eqtr3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑌 ) ) |
64 |
50 11
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) → ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
65 |
42 64
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
66 |
65 49
|
ffvelrnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ∈ ( Base ‘ 𝑌 ) ) |
67 |
65 45
|
ffvelrnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑌 ) ) |
68 |
11 52 59
|
domneq0 |
⊢ ( ( 𝑌 ∈ Domn ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) ) |
69 |
37 66 67 68
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) ) |
70 |
63 69
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) ) |
71 |
1 40 59
|
zndvds0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / 𝑥 ) ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑁 / 𝑥 ) ) ) |
72 |
58 49 71
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑁 / 𝑥 ) ) ) |
73 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
74 |
73
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
75 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
76 |
75
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∈ ℝ ) |
77 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 0 < 𝑁 ) |
79 |
|
nngt0 |
⊢ ( 𝑥 ∈ ℕ → 0 < 𝑥 ) |
80 |
79
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 0 < 𝑥 ) |
81 |
74 76 78 80
|
divgt0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 0 < ( 𝑁 / 𝑥 ) ) |
82 |
|
elnnz |
⊢ ( ( 𝑁 / 𝑥 ) ∈ ℕ ↔ ( ( 𝑁 / 𝑥 ) ∈ ℤ ∧ 0 < ( 𝑁 / 𝑥 ) ) ) |
83 |
49 81 82
|
sylanbrc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 / 𝑥 ) ∈ ℕ ) |
84 |
|
dvdsle |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑁 / 𝑥 ) ∈ ℕ ) → ( 𝑁 ∥ ( 𝑁 / 𝑥 ) → 𝑁 ≤ ( 𝑁 / 𝑥 ) ) ) |
85 |
46 83 84
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 ∥ ( 𝑁 / 𝑥 ) → 𝑁 ≤ ( 𝑁 / 𝑥 ) ) ) |
86 |
|
1red |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 1 ∈ ℝ ) |
87 |
|
0lt1 |
⊢ 0 < 1 |
88 |
87
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 0 < 1 ) |
89 |
|
lediv2 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( 𝑥 ≤ 1 ↔ ( 𝑁 / 1 ) ≤ ( 𝑁 / 𝑥 ) ) ) |
90 |
76 80 86 88 74 78 89
|
syl222anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑥 ≤ 1 ↔ ( 𝑁 / 1 ) ≤ ( 𝑁 / 𝑥 ) ) ) |
91 |
|
nnle1eq1 |
⊢ ( 𝑥 ∈ ℕ → ( 𝑥 ≤ 1 ↔ 𝑥 = 1 ) ) |
92 |
91
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑥 ≤ 1 ↔ 𝑥 = 1 ) ) |
93 |
30
|
div1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 / 1 ) = 𝑁 ) |
94 |
93
|
breq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( 𝑁 / 1 ) ≤ ( 𝑁 / 𝑥 ) ↔ 𝑁 ≤ ( 𝑁 / 𝑥 ) ) ) |
95 |
90 92 94
|
3bitr3rd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 ≤ ( 𝑁 / 𝑥 ) ↔ 𝑥 = 1 ) ) |
96 |
85 95
|
sylibd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 ∥ ( 𝑁 / 𝑥 ) → 𝑥 = 1 ) ) |
97 |
72 96
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) → 𝑥 = 1 ) ) |
98 |
1 40 59
|
zndvds0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑥 ) ) |
99 |
58 45 98
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ 𝑥 ) ) |
100 |
|
nnnn0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) |
101 |
100
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → 𝑥 ∈ ℕ0 ) |
102 |
|
dvdseq |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑥 ∥ 𝑁 ∧ 𝑁 ∥ 𝑥 ) ) → 𝑥 = 𝑁 ) |
103 |
102
|
expr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∥ 𝑁 ) → ( 𝑁 ∥ 𝑥 → 𝑥 = 𝑁 ) ) |
104 |
101 58 43 103
|
syl21anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑁 ∥ 𝑥 → 𝑥 = 𝑁 ) ) |
105 |
99 104
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) → 𝑥 = 𝑁 ) ) |
106 |
97 105
|
orim12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / 𝑥 ) ) = ( 0g ‘ 𝑌 ) ∨ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g ‘ 𝑌 ) ) → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) ) |
107 |
70 106
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑥 ∥ 𝑁 ) ) → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) |
108 |
107
|
expr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∥ 𝑁 → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) ) |
109 |
108
|
ralrimiva |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → ∀ 𝑥 ∈ ℕ ( 𝑥 ∥ 𝑁 → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) ) |
110 |
|
isprm2 |
⊢ ( 𝑁 ∈ ℙ ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑥 ∈ ℕ ( 𝑥 ∥ 𝑁 → ( 𝑥 = 1 ∨ 𝑥 = 𝑁 ) ) ) ) |
111 |
28 109 110
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn ) → 𝑁 ∈ ℙ ) |
112 |
111
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( 𝑌 ∈ IDomn → 𝑁 ∈ ℙ ) ) |
113 |
1
|
znfld |
⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ Field ) |
114 |
|
fldidom |
⊢ ( 𝑌 ∈ Field → 𝑌 ∈ IDomn ) |
115 |
113 114
|
syl |
⊢ ( 𝑁 ∈ ℙ → 𝑌 ∈ IDomn ) |
116 |
112 115
|
impbid1 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ ) ) |