Step |
Hyp |
Ref |
Expression |
1 |
|
znle2.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
znle2.f |
⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) |
3 |
|
znle2.w |
⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) |
4 |
|
znle2.l |
⊢ ≤ = ( le ‘ 𝑌 ) |
5 |
|
eqid |
⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) |
6 |
|
eqid |
⊢ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
7 |
|
eqid |
⊢ ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) = ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) |
8 |
5 6 1 7 3 4
|
znle |
⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ) ) |
9 |
5 6 1
|
znzrh |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( ℤRHom ‘ 𝑌 ) ) |
10 |
9
|
reseq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) = 𝐹 ) |
12 |
11
|
coeq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ∘ ≤ ) = ( 𝐹 ∘ ≤ ) ) |
13 |
11
|
cnveqd |
⊢ ( 𝑁 ∈ ℕ0 → ◡ ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) = ◡ 𝐹 ) |
14 |
12 13
|
coeq12d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ↾ 𝑊 ) ) = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |
15 |
8 14
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |