Step |
Hyp |
Ref |
Expression |
1 |
|
znle2.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
znle2.f |
⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) |
3 |
|
znle2.w |
⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) |
4 |
|
znle2.l |
⊢ ≤ = ( le ‘ 𝑌 ) |
5 |
|
znleval.x |
⊢ 𝑋 = ( Base ‘ 𝑌 ) |
6 |
1 2 3 4
|
znle2 |
⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |
7 |
|
relco |
⊢ Rel ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) |
8 |
|
relssdmrn |
⊢ ( Rel ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) → ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |
10 |
|
dmcoss |
⊢ dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ dom ◡ 𝐹 |
11 |
|
df-rn |
⊢ ran 𝐹 = dom ◡ 𝐹 |
12 |
1 5 2 3
|
znf1o |
⊢ ( 𝑁 ∈ ℕ0 → 𝐹 : 𝑊 –1-1-onto→ 𝑋 ) |
13 |
|
f1ofo |
⊢ ( 𝐹 : 𝑊 –1-1-onto→ 𝑋 → 𝐹 : 𝑊 –onto→ 𝑋 ) |
14 |
|
forn |
⊢ ( 𝐹 : 𝑊 –onto→ 𝑋 → ran 𝐹 = 𝑋 ) |
15 |
12 13 14
|
3syl |
⊢ ( 𝑁 ∈ ℕ0 → ran 𝐹 = 𝑋 ) |
16 |
11 15
|
eqtr3id |
⊢ ( 𝑁 ∈ ℕ0 → dom ◡ 𝐹 = 𝑋 ) |
17 |
10 16
|
sseqtrid |
⊢ ( 𝑁 ∈ ℕ0 → dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ 𝑋 ) |
18 |
|
rncoss |
⊢ ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ ran ( 𝐹 ∘ ≤ ) |
19 |
|
rncoss |
⊢ ran ( 𝐹 ∘ ≤ ) ⊆ ran 𝐹 |
20 |
19 15
|
sseqtrid |
⊢ ( 𝑁 ∈ ℕ0 → ran ( 𝐹 ∘ ≤ ) ⊆ 𝑋 ) |
21 |
18 20
|
sstrid |
⊢ ( 𝑁 ∈ ℕ0 → ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ 𝑋 ) |
22 |
|
xpss12 |
⊢ ( ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ 𝑋 ∧ ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ 𝑋 ) → ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
23 |
17 21 22
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ( dom ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) × ran ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
24 |
9 23
|
sstrid |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ⊆ ( 𝑋 × 𝑋 ) ) |
25 |
6 24
|
eqsstrd |
⊢ ( 𝑁 ∈ ℕ0 → ≤ ⊆ ( 𝑋 × 𝑋 ) ) |
26 |
25
|
ssbrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 → 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ) ) |
27 |
|
brxp |
⊢ ( 𝐴 ( 𝑋 × 𝑋 ) 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
28 |
26 27
|
syl6ib |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ) |
29 |
28
|
pm4.71rd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≤ 𝐵 ) ) ) |
30 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ≤ = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |
31 |
30
|
breqd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 𝐵 ) ) |
32 |
|
brcog |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 ◡ 𝐹 𝑥 ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 ◡ 𝐹 𝑥 ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) |
34 |
|
eqcom |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ↔ ( ◡ 𝐹 ‘ 𝐴 ) = 𝑥 ) |
35 |
12
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐹 : 𝑊 –1-1-onto→ 𝑋 ) |
36 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑊 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 ) |
37 |
|
f1ofn |
⊢ ( ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 → ◡ 𝐹 Fn 𝑋 ) |
38 |
35 36 37
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ◡ 𝐹 Fn 𝑋 ) |
39 |
|
simprl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
40 |
|
fnbrfvb |
⊢ ( ( ◡ 𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝐴 ) = 𝑥 ↔ 𝐴 ◡ 𝐹 𝑥 ) ) |
41 |
38 39 40
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐴 ) = 𝑥 ↔ 𝐴 ◡ 𝐹 𝑥 ) ) |
42 |
34 41
|
bitr2id |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ◡ 𝐹 𝑥 ↔ 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ) ) |
43 |
42
|
anbi1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 ◡ 𝐹 𝑥 ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ↔ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) |
44 |
43
|
exbidv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∃ 𝑥 ( 𝐴 ◡ 𝐹 𝑥 ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) |
45 |
33 44
|
bitrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 𝐵 ↔ ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ) ) |
46 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ 𝐴 ) ∈ V |
47 |
|
breq1 |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) → ( 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ) ) |
48 |
46 47
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ↔ ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ) |
49 |
|
simprr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
50 |
|
brcog |
⊢ ( ( ( ◡ 𝐹 ‘ 𝐴 ) ∈ V ∧ 𝐵 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ↔ ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) |
51 |
46 49 50
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ↔ ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) |
52 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ 𝐵 ) ∈ V |
53 |
|
breq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
54 |
52 53
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) |
55 |
|
eqcom |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ↔ ( ◡ 𝐹 ‘ 𝐵 ) = 𝑥 ) |
56 |
|
fnbrfvb |
⊢ ( ( ◡ 𝐹 Fn 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝐵 ) = 𝑥 ↔ 𝐵 ◡ 𝐹 𝑥 ) ) |
57 |
38 49 56
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐵 ) = 𝑥 ↔ 𝐵 ◡ 𝐹 𝑥 ) ) |
58 |
55 57
|
syl5bb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ↔ 𝐵 ◡ 𝐹 𝑥 ) ) |
59 |
|
vex |
⊢ 𝑥 ∈ V |
60 |
|
brcnvg |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝑥 ∈ V ) → ( 𝐵 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝐵 ) ) |
61 |
49 59 60
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 ◡ 𝐹 𝑥 ↔ 𝑥 𝐹 𝐵 ) ) |
62 |
58 61
|
bitrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ↔ 𝑥 𝐹 𝐵 ) ) |
63 |
62
|
anbi1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ↔ ( 𝑥 𝐹 𝐵 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ) ) |
64 |
63
|
biancomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ↔ ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) |
65 |
64
|
exbidv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐵 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ) ↔ ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) |
66 |
54 65
|
bitr3id |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ↔ ∃ 𝑥 ( ( ◡ 𝐹 ‘ 𝐴 ) ≤ 𝑥 ∧ 𝑥 𝐹 𝐵 ) ) ) |
67 |
51 66
|
bitr4d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝐴 ) ( 𝐹 ∘ ≤ ) 𝐵 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
68 |
48 67
|
syl5bb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∃ 𝑥 ( 𝑥 = ( ◡ 𝐹 ‘ 𝐴 ) ∧ 𝑥 ( 𝐹 ∘ ≤ ) 𝐵 ) ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
69 |
31 45 68
|
3bitrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
70 |
69
|
pm5.32da |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≤ 𝐵 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |
71 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
72 |
70 71
|
bitr4di |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝐴 ≤ 𝐵 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |
73 |
29 72
|
bitrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝐴 ) ≤ ( ◡ 𝐹 ‘ 𝐵 ) ) ) ) |