Metamath Proof Explorer


Theorem znnen

Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of Gleason p. 140. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 13-Jun-2014)

Ref Expression
Assertion znnen ℤ ≈ ℕ

Proof

Step Hyp Ref Expression
1 omelon ω ∈ On
2 nnenom ℕ ≈ ω
3 2 ensymi ω ≈ ℕ
4 isnumi ( ( ω ∈ On ∧ ω ≈ ℕ ) → ℕ ∈ dom card )
5 1 3 4 mp2an ℕ ∈ dom card
6 xpnum ( ( ℕ ∈ dom card ∧ ℕ ∈ dom card ) → ( ℕ × ℕ ) ∈ dom card )
7 5 5 6 mp2an ( ℕ × ℕ ) ∈ dom card
8 subf − : ( ℂ × ℂ ) ⟶ ℂ
9 ffun ( − : ( ℂ × ℂ ) ⟶ ℂ → Fun − )
10 8 9 ax-mp Fun −
11 nnsscn ℕ ⊆ ℂ
12 xpss12 ( ( ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ ) → ( ℕ × ℕ ) ⊆ ( ℂ × ℂ ) )
13 11 11 12 mp2an ( ℕ × ℕ ) ⊆ ( ℂ × ℂ )
14 8 fdmi dom − = ( ℂ × ℂ )
15 13 14 sseqtrri ( ℕ × ℕ ) ⊆ dom −
16 fores ( ( Fun − ∧ ( ℕ × ℕ ) ⊆ dom − ) → ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) )
17 10 15 16 mp2an ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) )
18 dfz2 ℤ = ( − “ ( ℕ × ℕ ) )
19 foeq3 ( ℤ = ( − “ ( ℕ × ℕ ) ) → ( ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ ↔ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) ) )
20 18 19 ax-mp ( ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ ↔ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) )
21 17 20 mpbir ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ
22 fodomnum ( ( ℕ × ℕ ) ∈ dom card → ( ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ → ℤ ≼ ( ℕ × ℕ ) ) )
23 7 21 22 mp2 ℤ ≼ ( ℕ × ℕ )
24 xpnnen ( ℕ × ℕ ) ≈ ℕ
25 domentr ( ( ℤ ≼ ( ℕ × ℕ ) ∧ ( ℕ × ℕ ) ≈ ℕ ) → ℤ ≼ ℕ )
26 23 24 25 mp2an ℤ ≼ ℕ
27 zex ℤ ∈ V
28 nnssz ℕ ⊆ ℤ
29 ssdomg ( ℤ ∈ V → ( ℕ ⊆ ℤ → ℕ ≼ ℤ ) )
30 27 28 29 mp2 ℕ ≼ ℤ
31 sbth ( ( ℤ ≼ ℕ ∧ ℕ ≼ ℤ ) → ℤ ≈ ℕ )
32 26 30 31 mp2an ℤ ≈ ℕ