Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
⊢ ω ∈ On |
2 |
|
nnenom |
⊢ ℕ ≈ ω |
3 |
2
|
ensymi |
⊢ ω ≈ ℕ |
4 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ℕ ) → ℕ ∈ dom card ) |
5 |
1 3 4
|
mp2an |
⊢ ℕ ∈ dom card |
6 |
|
xpnum |
⊢ ( ( ℕ ∈ dom card ∧ ℕ ∈ dom card ) → ( ℕ × ℕ ) ∈ dom card ) |
7 |
5 5 6
|
mp2an |
⊢ ( ℕ × ℕ ) ∈ dom card |
8 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
9 |
|
ffun |
⊢ ( − : ( ℂ × ℂ ) ⟶ ℂ → Fun − ) |
10 |
8 9
|
ax-mp |
⊢ Fun − |
11 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
12 |
|
xpss12 |
⊢ ( ( ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ ) → ( ℕ × ℕ ) ⊆ ( ℂ × ℂ ) ) |
13 |
11 11 12
|
mp2an |
⊢ ( ℕ × ℕ ) ⊆ ( ℂ × ℂ ) |
14 |
8
|
fdmi |
⊢ dom − = ( ℂ × ℂ ) |
15 |
13 14
|
sseqtrri |
⊢ ( ℕ × ℕ ) ⊆ dom − |
16 |
|
fores |
⊢ ( ( Fun − ∧ ( ℕ × ℕ ) ⊆ dom − ) → ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) ) |
17 |
10 15 16
|
mp2an |
⊢ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) |
18 |
|
dfz2 |
⊢ ℤ = ( − “ ( ℕ × ℕ ) ) |
19 |
|
foeq3 |
⊢ ( ℤ = ( − “ ( ℕ × ℕ ) ) → ( ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ ↔ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) ) ) |
20 |
18 19
|
ax-mp |
⊢ ( ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ ↔ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ( − “ ( ℕ × ℕ ) ) ) |
21 |
17 20
|
mpbir |
⊢ ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ |
22 |
|
fodomnum |
⊢ ( ( ℕ × ℕ ) ∈ dom card → ( ( − ↾ ( ℕ × ℕ ) ) : ( ℕ × ℕ ) –onto→ ℤ → ℤ ≼ ( ℕ × ℕ ) ) ) |
23 |
7 21 22
|
mp2 |
⊢ ℤ ≼ ( ℕ × ℕ ) |
24 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
25 |
|
domentr |
⊢ ( ( ℤ ≼ ( ℕ × ℕ ) ∧ ( ℕ × ℕ ) ≈ ℕ ) → ℤ ≼ ℕ ) |
26 |
23 24 25
|
mp2an |
⊢ ℤ ≼ ℕ |
27 |
|
zex |
⊢ ℤ ∈ V |
28 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
29 |
|
ssdomg |
⊢ ( ℤ ∈ V → ( ℕ ⊆ ℤ → ℕ ≼ ℤ ) ) |
30 |
27 28 29
|
mp2 |
⊢ ℕ ≼ ℤ |
31 |
|
sbth |
⊢ ( ( ℤ ≼ ℕ ∧ ℕ ≼ ℤ ) → ℤ ≈ ℕ ) |
32 |
26 30 31
|
mp2an |
⊢ ℤ ≈ ℕ |