| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 2 |
1
|
znegcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℤ ) |
| 3 |
|
elznn |
⊢ ( - 𝑁 ∈ ℤ ↔ ( - 𝑁 ∈ ℝ ∧ ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) ) ) |
| 4 |
2 3
|
sylib |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ( - 𝑁 ∈ ℝ ∧ ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) ) ) |
| 5 |
4
|
simprd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) ) |
| 6 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 8 |
7
|
negnegd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - - 𝑁 = 𝑁 ) |
| 9 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ¬ 𝑁 ∈ ℕ0 ) |
| 10 |
8 9
|
eqneltrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ¬ - - 𝑁 ∈ ℕ0 ) |
| 11 |
|
pm2.24 |
⊢ ( - - 𝑁 ∈ ℕ0 → ( ¬ - - 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℕ ) ) |
| 12 |
11
|
jao1i |
⊢ ( ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) → ( ¬ - - 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℕ ) ) |
| 13 |
5 10 12
|
sylc |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ ) |