Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
2 |
1
|
znegcld |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℤ ) |
3 |
|
elznn |
⊢ ( - 𝑁 ∈ ℤ ↔ ( - 𝑁 ∈ ℝ ∧ ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) ) ) |
4 |
2 3
|
sylib |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ( - 𝑁 ∈ ℝ ∧ ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) ) ) |
5 |
4
|
simprd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) ) |
6 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
7 |
6
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
8 |
7
|
negnegd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - - 𝑁 = 𝑁 ) |
9 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ¬ 𝑁 ∈ ℕ0 ) |
10 |
8 9
|
eqneltrd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → ¬ - - 𝑁 ∈ ℕ0 ) |
11 |
|
pm2.24 |
⊢ ( - - 𝑁 ∈ ℕ0 → ( ¬ - - 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℕ ) ) |
12 |
11
|
jao1i |
⊢ ( ( - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ0 ) → ( ¬ - - 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℕ ) ) |
13 |
5 10 12
|
sylc |
⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ ) |