Description: An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | znnnlt1 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnnz1 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) | |
2 | 1 | baib | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℕ ↔ 1 ≤ 𝑁 ) ) |
3 | 2 | notbid | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 𝑁 ∈ ℕ ↔ ¬ 1 ≤ 𝑁 ) ) |
4 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
5 | 1re | ⊢ 1 ∈ ℝ | |
6 | ltnle | ⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑁 < 1 ↔ ¬ 1 ≤ 𝑁 ) ) | |
7 | 4 5 6 | sylancl | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 < 1 ↔ ¬ 1 ≤ 𝑁 ) ) |
8 | 3 7 | bitr4d | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1 ) ) |