Metamath Proof Explorer


Theorem znnnlt1

Description: An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005)

Ref Expression
Assertion znnnlt1 ( 𝑁 ∈ ℤ → ( ¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1 ) )

Proof

Step Hyp Ref Expression
1 elnnz1 ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) )
2 1 baib ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℕ ↔ 1 ≤ 𝑁 ) )
3 2 notbid ( 𝑁 ∈ ℤ → ( ¬ 𝑁 ∈ ℕ ↔ ¬ 1 ≤ 𝑁 ) )
4 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
5 1re 1 ∈ ℝ
6 ltnle ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑁 < 1 ↔ ¬ 1 ≤ 𝑁 ) )
7 4 5 6 sylancl ( 𝑁 ∈ ℤ → ( 𝑁 < 1 ↔ ¬ 1 ≤ 𝑁 ) )
8 3 7 bitr4d ( 𝑁 ∈ ℤ → ( ¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1 ) )