Metamath Proof Explorer


Theorem znq

Description: The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion znq ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 )
2 rspceov ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) )
3 1 2 mp3an3 ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) )
4 elq ( ( 𝐴 / 𝐵 ) ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) )
5 3 4 sylibr ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ )