| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znchr.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
znunit.u |
⊢ 𝑈 = ( Unit ‘ 𝑌 ) |
| 3 |
|
znrrg.e |
⊢ 𝐸 = ( RLReg ‘ 𝑌 ) |
| 4 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 6 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) |
| 7 |
1 5 6
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 8 |
4 7
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 9 |
3 5
|
rrgss |
⊢ 𝐸 ⊆ ( Base ‘ 𝑌 ) |
| 10 |
9
|
sseli |
⊢ ( 𝑥 ∈ 𝐸 → 𝑥 ∈ ( Base ‘ 𝑌 ) ) |
| 11 |
|
foelrn |
⊢ ( ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑥 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ) |
| 12 |
8 10 11
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐸 ) → ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ) |
| 13 |
12
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ 𝐸 → ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ) ) |
| 14 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 15 |
14
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∈ ℂ ) |
| 16 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑛 ∈ ℤ ) |
| 17 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∈ ℤ ) |
| 19 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ≠ 0 ) |
| 21 |
|
simpr |
⊢ ( ( 𝑛 = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 22 |
21
|
necon3ai |
⊢ ( 𝑁 ≠ 0 → ¬ ( 𝑛 = 0 ∧ 𝑁 = 0 ) ) |
| 23 |
20 22
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ¬ ( 𝑛 = 0 ∧ 𝑁 = 0 ) ) |
| 24 |
|
gcdn0cl |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑛 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑛 gcd 𝑁 ) ∈ ℕ ) |
| 25 |
16 18 23 24
|
syl21anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∈ ℕ ) |
| 26 |
25
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∈ ℂ ) |
| 27 |
25
|
nnne0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ≠ 0 ) |
| 28 |
15 26 27
|
divcan2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = 𝑁 ) |
| 29 |
|
gcddvds |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑛 ∧ ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 30 |
16 18 29
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑛 ∧ ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 31 |
30
|
simpld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∥ 𝑛 ) |
| 32 |
25
|
nnzd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∈ ℤ ) |
| 33 |
30
|
simprd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ) |
| 34 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∈ ℕ ) |
| 35 |
|
nndivdvds |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 gcd 𝑁 ) ∈ ℕ ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℕ ) ) |
| 36 |
34 25 35
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℕ ) ) |
| 37 |
33 36
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℕ ) |
| 38 |
37
|
nnzd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ) |
| 39 |
|
dvdsmulc |
⊢ ( ( ( 𝑛 gcd 𝑁 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑛 → ( ( 𝑛 gcd 𝑁 ) · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 40 |
32 16 38 39
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) ∥ 𝑛 → ( ( 𝑛 gcd 𝑁 ) · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 41 |
31 40
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 42 |
28 41
|
eqbrtrrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 43 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) |
| 44 |
4
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∈ ℕ0 ) |
| 45 |
44 7
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 46 |
|
fof |
⊢ ( ( ℤRHom ‘ 𝑌 ) : ℤ –onto→ ( Base ‘ 𝑌 ) → ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ℤRHom ‘ 𝑌 ) : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
| 48 |
47 38
|
ffvelcdmd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 49 |
|
eqid |
⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) |
| 50 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
| 51 |
3 5 49 50
|
rrgeq0i |
⊢ ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 52 |
43 48 51
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 53 |
1
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 54 |
4 53
|
syl |
⊢ ( 𝑁 ∈ ℕ → 𝑌 ∈ CRing ) |
| 55 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
| 56 |
54 55
|
syl |
⊢ ( 𝑁 ∈ ℕ → 𝑌 ∈ Ring ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑌 ∈ Ring ) |
| 58 |
6
|
zrhrhm |
⊢ ( 𝑌 ∈ Ring → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
| 59 |
57 58
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ) |
| 60 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 61 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
| 62 |
60 61 49
|
rhmmul |
⊢ ( ( ( ℤRHom ‘ 𝑌 ) ∈ ( ℤring RingHom 𝑌 ) ∧ 𝑛 ∈ ℤ ∧ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 63 |
59 16 38 62
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 64 |
63
|
eqeq1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ) ) |
| 65 |
16 38
|
zmulcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∈ ℤ ) |
| 66 |
1 6 50
|
zndvds0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 67 |
44 65 66
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 68 |
64 67
|
bitr3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ( .r ‘ 𝑌 ) ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) ) |
| 69 |
1 6 50
|
zndvds0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 70 |
44 38 69
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) = ( 0g ‘ 𝑌 ) ↔ 𝑁 ∥ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 71 |
52 68 70
|
3imtr3d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 ∥ ( 𝑛 · ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) → 𝑁 ∥ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) ) |
| 72 |
42 71
|
mpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 𝑁 ∥ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) |
| 73 |
15 26 27
|
divcan1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · ( 𝑛 gcd 𝑁 ) ) = 𝑁 ) |
| 74 |
37
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℂ ) |
| 75 |
74
|
mulridd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · 1 ) = ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ) |
| 76 |
72 73 75
|
3brtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · ( 𝑛 gcd 𝑁 ) ) ∥ ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · 1 ) ) |
| 77 |
|
1zzd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → 1 ∈ ℤ ) |
| 78 |
37
|
nnne0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ≠ 0 ) |
| 79 |
|
dvdscmulr |
⊢ ( ( ( 𝑛 gcd 𝑁 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ∈ ℤ ∧ ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) ≠ 0 ) ) → ( ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · ( 𝑛 gcd 𝑁 ) ) ∥ ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · 1 ) ↔ ( 𝑛 gcd 𝑁 ) ∥ 1 ) ) |
| 80 |
32 77 38 78 79
|
syl112anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · ( 𝑛 gcd 𝑁 ) ) ∥ ( ( 𝑁 / ( 𝑛 gcd 𝑁 ) ) · 1 ) ↔ ( 𝑛 gcd 𝑁 ) ∥ 1 ) ) |
| 81 |
76 80
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∥ 1 ) |
| 82 |
16 18
|
gcdcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) ∈ ℕ0 ) |
| 83 |
|
dvds1 |
⊢ ( ( 𝑛 gcd 𝑁 ) ∈ ℕ0 → ( ( 𝑛 gcd 𝑁 ) ∥ 1 ↔ ( 𝑛 gcd 𝑁 ) = 1 ) ) |
| 84 |
82 83
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( 𝑛 gcd 𝑁 ) ∥ 1 ↔ ( 𝑛 gcd 𝑁 ) = 1 ) ) |
| 85 |
81 84
|
mpbid |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( 𝑛 gcd 𝑁 ) = 1 ) |
| 86 |
1 2 6
|
znunit |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ↔ ( 𝑛 gcd 𝑁 ) = 1 ) ) |
| 87 |
44 16 86
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ↔ ( 𝑛 gcd 𝑁 ) = 1 ) ) |
| 88 |
85 87
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) ∧ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ) |
| 89 |
88
|
ex |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ) ) |
| 90 |
|
eleq1 |
⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( 𝑥 ∈ 𝐸 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 ) ) |
| 91 |
|
eleq1 |
⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( 𝑥 ∈ 𝑈 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ) ) |
| 92 |
90 91
|
imbi12d |
⊢ ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( ( 𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈 ) ↔ ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝐸 → ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) ∈ 𝑈 ) ) ) |
| 93 |
89 92
|
syl5ibrcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ ) → ( 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( 𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈 ) ) ) |
| 94 |
93
|
rexlimdva |
⊢ ( 𝑁 ∈ ℕ → ( ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → ( 𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈 ) ) ) |
| 95 |
94
|
com23 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ 𝐸 → ( ∃ 𝑛 ∈ ℤ 𝑥 = ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑛 ) → 𝑥 ∈ 𝑈 ) ) ) |
| 96 |
13 95
|
mpdd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈 ) ) |
| 97 |
96
|
ssrdv |
⊢ ( 𝑁 ∈ ℕ → 𝐸 ⊆ 𝑈 ) |
| 98 |
3 2
|
unitrrg |
⊢ ( 𝑌 ∈ Ring → 𝑈 ⊆ 𝐸 ) |
| 99 |
56 98
|
syl |
⊢ ( 𝑁 ∈ ℕ → 𝑈 ⊆ 𝐸 ) |
| 100 |
97 99
|
eqssd |
⊢ ( 𝑁 ∈ ℕ → 𝐸 = 𝑈 ) |