Step |
Hyp |
Ref |
Expression |
1 |
|
znsqcld.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
2 |
|
znsqcld.2 |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
3 |
1
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
4 |
|
2z |
⊢ 2 ∈ ℤ |
5 |
4
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
6 |
3 2 5
|
expne0d |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ≠ 0 ) |
7 |
6
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝑁 ↑ 2 ) = 0 ) |
8 |
|
zsqcl2 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ↑ 2 ) ∈ ℕ0 ) |
9 |
1 8
|
syl |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℕ0 ) |
10 |
|
elnn0 |
⊢ ( ( 𝑁 ↑ 2 ) ∈ ℕ0 ↔ ( ( 𝑁 ↑ 2 ) ∈ ℕ ∨ ( 𝑁 ↑ 2 ) = 0 ) ) |
11 |
9 10
|
sylib |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) ∈ ℕ ∨ ( 𝑁 ↑ 2 ) = 0 ) ) |
12 |
11
|
orcomd |
⊢ ( 𝜑 → ( ( 𝑁 ↑ 2 ) = 0 ∨ ( 𝑁 ↑ 2 ) ∈ ℕ ) ) |
13 |
12
|
ord |
⊢ ( 𝜑 → ( ¬ ( 𝑁 ↑ 2 ) = 0 → ( 𝑁 ↑ 2 ) ∈ ℕ ) ) |
14 |
7 13
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ↑ 2 ) ∈ ℕ ) |