Metamath Proof Explorer


Theorem zntos

Description: The Z/nZ structure is a totally ordered set. (The order is not respected by the operations, except in the case N = 0 when it coincides with the ordering on ZZ .) (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis zntos.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
Assertion zntos ( 𝑁 ∈ ℕ0𝑌 ∈ Toset )

Proof

Step Hyp Ref Expression
1 zntos.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
2 eqid ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) = ( ( ℤRHom ‘ 𝑌 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) )
3 eqid if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) )
4 eqid ( le ‘ 𝑌 ) = ( le ‘ 𝑌 )
5 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
6 1 2 3 4 5 zntoslem ( 𝑁 ∈ ℕ0𝑌 ∈ Toset )