Step |
Hyp |
Ref |
Expression |
1 |
|
znle2.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
znle2.f |
⊢ 𝐹 = ( ( ℤRHom ‘ 𝑌 ) ↾ 𝑊 ) |
3 |
|
znle2.w |
⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) |
4 |
|
znle2.l |
⊢ ≤ = ( le ‘ 𝑌 ) |
5 |
|
znleval.x |
⊢ 𝑋 = ( Base ‘ 𝑌 ) |
6 |
1
|
fvexi |
⊢ 𝑌 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ V ) |
8 |
5
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 𝑋 = ( Base ‘ 𝑌 ) ) |
9 |
4
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( le ‘ 𝑌 ) ) |
10 |
1 5 2 3
|
znf1o |
⊢ ( 𝑁 ∈ ℕ0 → 𝐹 : 𝑊 –1-1-onto→ 𝑋 ) |
11 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑊 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 ) |
12 |
10 11
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 ) |
13 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 → ◡ 𝐹 : 𝑋 ⟶ 𝑊 ) |
14 |
12 13
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ◡ 𝐹 : 𝑋 ⟶ 𝑊 ) |
15 |
|
sseq1 |
⊢ ( ℤ = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) → ( ℤ ⊆ ℤ ↔ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ⊆ ℤ ) ) |
16 |
|
sseq1 |
⊢ ( ( 0 ..^ 𝑁 ) = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) → ( ( 0 ..^ 𝑁 ) ⊆ ℤ ↔ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ⊆ ℤ ) ) |
17 |
|
ssid |
⊢ ℤ ⊆ ℤ |
18 |
|
fzossz |
⊢ ( 0 ..^ 𝑁 ) ⊆ ℤ |
19 |
15 16 17 18
|
keephyp |
⊢ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ⊆ ℤ |
20 |
3 19
|
eqsstri |
⊢ 𝑊 ⊆ ℤ |
21 |
|
zssre |
⊢ ℤ ⊆ ℝ |
22 |
20 21
|
sstri |
⊢ 𝑊 ⊆ ℝ |
23 |
|
fss |
⊢ ( ( ◡ 𝐹 : 𝑋 ⟶ 𝑊 ∧ 𝑊 ⊆ ℝ ) → ◡ 𝐹 : 𝑋 ⟶ ℝ ) |
24 |
14 22 23
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ◡ 𝐹 : 𝑋 ⟶ ℝ ) |
25 |
24
|
ffvelrnda |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
26 |
25
|
leidd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) |
27 |
1 2 3 4 5
|
znleval2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
28 |
27
|
3anidm23 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
29 |
26 28
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ≤ 𝑥 ) |
30 |
1 2 3 4 5
|
znleval2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑦 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
31 |
1 2 3 4 5
|
znleval2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
32 |
31
|
3com23 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ≤ 𝑥 ↔ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
33 |
30 32
|
anbi12d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
34 |
25
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
35 |
24
|
ffvelrnda |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
36 |
35
|
3adant2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
37 |
34 36
|
letri3d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑦 ) ↔ ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
38 |
|
f1of1 |
⊢ ( ◡ 𝐹 : 𝑋 –1-1-onto→ 𝑊 → ◡ 𝐹 : 𝑋 –1-1→ 𝑊 ) |
39 |
12 38
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ◡ 𝐹 : 𝑋 –1-1→ 𝑊 ) |
40 |
|
f1fveq |
⊢ ( ( ◡ 𝐹 : 𝑋 –1-1→ 𝑊 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
41 |
39 40
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
42 |
41
|
3impb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) = ( ◡ 𝐹 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
43 |
33 37 42
|
3bitr2d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
44 |
43
|
biimpd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ) → 𝑥 = 𝑦 ) ) |
45 |
25
|
3ad2antr1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
46 |
35
|
3ad2antr2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
47 |
24
|
ffvelrnda |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑧 ∈ 𝑋 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
48 |
47
|
3ad2antr3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
49 |
|
letr |
⊢ ( ( ( ◡ 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ ℝ ∧ ( ◡ 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
50 |
45 46 48 49
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
51 |
30
|
3adant3r3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ≤ 𝑦 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
52 |
1 2 3 4 5
|
znleval2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ≤ 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
53 |
52
|
3adant3r1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ≤ 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
54 |
51 53
|
anbi12d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ↔ ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) ) |
55 |
1 2 3 4 5
|
znleval2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
56 |
55
|
3adant3r2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ≤ 𝑧 ↔ ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑧 ) ) ) |
57 |
50 54 56
|
3imtr4d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) |
58 |
7 8 9 29 44 57
|
isposd |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Poset ) |
59 |
34 36
|
letrid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∨ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) |
60 |
30 32
|
orbi12d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ↔ ( ( ◡ 𝐹 ‘ 𝑥 ) ≤ ( ◡ 𝐹 ‘ 𝑦 ) ∨ ( ◡ 𝐹 ‘ 𝑦 ) ≤ ( ◡ 𝐹 ‘ 𝑥 ) ) ) ) |
61 |
59 60
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
62 |
61
|
3expb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
63 |
62
|
ralrimivva |
⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
64 |
5 4
|
istos |
⊢ ( 𝑌 ∈ Toset ↔ ( 𝑌 ∈ Poset ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
65 |
58 63 64
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ Toset ) |