Step |
Hyp |
Ref |
Expression |
1 |
|
znumd.1 |
⊢ ( 𝜑 → 𝑍 ∈ ℤ ) |
2 |
|
zq |
⊢ ( 𝑍 ∈ ℤ → 𝑍 ∈ ℚ ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ℚ ) |
4 |
|
1nn |
⊢ 1 ∈ ℕ |
5 |
4
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
6 |
|
gcd1 |
⊢ ( 𝑍 ∈ ℤ → ( 𝑍 gcd 1 ) = 1 ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → ( 𝑍 gcd 1 ) = 1 ) |
8 |
1
|
zcnd |
⊢ ( 𝜑 → 𝑍 ∈ ℂ ) |
9 |
8
|
div1d |
⊢ ( 𝜑 → ( 𝑍 / 1 ) = 𝑍 ) |
10 |
9
|
eqcomd |
⊢ ( 𝜑 → 𝑍 = ( 𝑍 / 1 ) ) |
11 |
|
qnumdenbi |
⊢ ( ( 𝑍 ∈ ℚ ∧ 𝑍 ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( ( 𝑍 gcd 1 ) = 1 ∧ 𝑍 = ( 𝑍 / 1 ) ) ↔ ( ( numer ‘ 𝑍 ) = 𝑍 ∧ ( denom ‘ 𝑍 ) = 1 ) ) ) |
12 |
11
|
biimpa |
⊢ ( ( ( 𝑍 ∈ ℚ ∧ 𝑍 ∈ ℤ ∧ 1 ∈ ℕ ) ∧ ( ( 𝑍 gcd 1 ) = 1 ∧ 𝑍 = ( 𝑍 / 1 ) ) ) → ( ( numer ‘ 𝑍 ) = 𝑍 ∧ ( denom ‘ 𝑍 ) = 1 ) ) |
13 |
3 1 5 7 10 12
|
syl32anc |
⊢ ( 𝜑 → ( ( numer ‘ 𝑍 ) = 𝑍 ∧ ( denom ‘ 𝑍 ) = 1 ) ) |
14 |
13
|
simpld |
⊢ ( 𝜑 → ( numer ‘ 𝑍 ) = 𝑍 ) |