Metamath Proof Explorer


Theorem znumd

Description: Numerator of an integer. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypothesis znumd.1 ( 𝜑𝑍 ∈ ℤ )
Assertion znumd ( 𝜑 → ( numer ‘ 𝑍 ) = 𝑍 )

Proof

Step Hyp Ref Expression
1 znumd.1 ( 𝜑𝑍 ∈ ℤ )
2 zq ( 𝑍 ∈ ℤ → 𝑍 ∈ ℚ )
3 1 2 syl ( 𝜑𝑍 ∈ ℚ )
4 1nn 1 ∈ ℕ
5 4 a1i ( 𝜑 → 1 ∈ ℕ )
6 gcd1 ( 𝑍 ∈ ℤ → ( 𝑍 gcd 1 ) = 1 )
7 1 6 syl ( 𝜑 → ( 𝑍 gcd 1 ) = 1 )
8 1 zcnd ( 𝜑𝑍 ∈ ℂ )
9 8 div1d ( 𝜑 → ( 𝑍 / 1 ) = 𝑍 )
10 9 eqcomd ( 𝜑𝑍 = ( 𝑍 / 1 ) )
11 qnumdenbi ( ( 𝑍 ∈ ℚ ∧ 𝑍 ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( ( 𝑍 gcd 1 ) = 1 ∧ 𝑍 = ( 𝑍 / 1 ) ) ↔ ( ( numer ‘ 𝑍 ) = 𝑍 ∧ ( denom ‘ 𝑍 ) = 1 ) ) )
12 11 biimpa ( ( ( 𝑍 ∈ ℚ ∧ 𝑍 ∈ ℤ ∧ 1 ∈ ℕ ) ∧ ( ( 𝑍 gcd 1 ) = 1 ∧ 𝑍 = ( 𝑍 / 1 ) ) ) → ( ( numer ‘ 𝑍 ) = 𝑍 ∧ ( denom ‘ 𝑍 ) = 1 ) )
13 3 1 5 7 10 12 syl32anc ( 𝜑 → ( ( numer ‘ 𝑍 ) = 𝑍 ∧ ( denom ‘ 𝑍 ) = 1 ) )
14 13 simpld ( 𝜑 → ( numer ‘ 𝑍 ) = 𝑍 )