| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znval2.s |
⊢ 𝑆 = ( RSpan ‘ ℤring ) |
| 2 |
|
znval2.u |
⊢ 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
| 3 |
|
znval2.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
| 4 |
|
znval2.l |
⊢ ≤ = ( le ‘ 𝑌 ) |
| 5 |
|
eqid |
⊢ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) = ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) |
| 6 |
|
eqid |
⊢ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) |
| 7 |
|
eqid |
⊢ ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) |
| 8 |
1 2 3 5 6 7
|
znval |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) 〉 ) ) |
| 9 |
1 2 3 5 6 4
|
znle |
⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) ) |
| 10 |
9
|
opeq2d |
⊢ ( 𝑁 ∈ ℕ0 → 〈 ( le ‘ ndx ) , ≤ 〉 = 〈 ( le ‘ ndx ) , ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) 〉 ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑈 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) 〉 ) ) |
| 12 |
8 11
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |