Metamath Proof Explorer


Theorem znzrh

Description: The ZZ ring homomorphism of Z/nZ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znval2.s 𝑆 = ( RSpan ‘ ℤring )
znval2.u 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
znval2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
Assertion znzrh ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑈 ) = ( ℤRHom ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 znval2.s 𝑆 = ( RSpan ‘ ℤring )
2 znval2.u 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
3 znval2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
4 eqidd ( 𝑁 ∈ ℕ0 → ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) )
5 1 2 3 znbas2 ( 𝑁 ∈ ℕ0 → ( Base ‘ 𝑈 ) = ( Base ‘ 𝑌 ) )
6 1 2 3 znadd ( 𝑁 ∈ ℕ0 → ( +g𝑈 ) = ( +g𝑌 ) )
7 6 oveqdr ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑥 ( +g𝑈 ) 𝑦 ) = ( 𝑥 ( +g𝑌 ) 𝑦 ) )
8 1 2 3 znmul ( 𝑁 ∈ ℕ0 → ( .r𝑈 ) = ( .r𝑌 ) )
9 8 oveqdr ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑥 ( .r𝑈 ) 𝑦 ) = ( 𝑥 ( .r𝑌 ) 𝑦 ) )
10 4 5 7 9 zrhpropd ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑈 ) = ( ℤRHom ‘ 𝑌 ) )