| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							znval2.s | 
							⊢ 𝑆  =  ( RSpan ‘ ℤring )  | 
						
						
							| 2 | 
							
								
							 | 
							znval2.u | 
							⊢ 𝑈  =  ( ℤring  /s  ( ℤring  ~QG  ( 𝑆 ‘ { 𝑁 } ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							znval2.y | 
							⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑁 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) )  | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							znbas2 | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑌 ) )  | 
						
						
							| 6 | 
							
								1 2 3
							 | 
							znadd | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( +g ‘ 𝑈 )  =  ( +g ‘ 𝑌 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveqdr | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) ) )  →  ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) )  | 
						
						
							| 8 | 
							
								1 2 3
							 | 
							znmul | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( .r ‘ 𝑈 )  =  ( .r ‘ 𝑌 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveqdr | 
							⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑥  ∈  ( Base ‘ 𝑈 )  ∧  𝑦  ∈  ( Base ‘ 𝑈 ) ) )  →  ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) )  | 
						
						
							| 10 | 
							
								4 5 7 9
							 | 
							zrhpropd | 
							⊢ ( 𝑁  ∈  ℕ0  →  ( ℤRHom ‘ 𝑈 )  =  ( ℤRHom ‘ 𝑌 ) )  |