Step |
Hyp |
Ref |
Expression |
1 |
|
znval2.s |
⊢ 𝑆 = ( RSpan ‘ ℤring ) |
2 |
|
znval2.u |
⊢ 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
3 |
|
znval2.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
eqidd |
⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) ) |
5 |
1 2 3
|
znbas2 |
⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ 𝑈 ) = ( Base ‘ 𝑌 ) ) |
6 |
1 2 3
|
znadd |
⊢ ( 𝑁 ∈ ℕ0 → ( +g ‘ 𝑈 ) = ( +g ‘ 𝑌 ) ) |
7 |
6
|
oveqdr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑥 ( +g ‘ 𝑈 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) |
8 |
1 2 3
|
znmul |
⊢ ( 𝑁 ∈ ℕ0 → ( .r ‘ 𝑈 ) = ( .r ‘ 𝑌 ) ) |
9 |
8
|
oveqdr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ( Base ‘ 𝑈 ) ∧ 𝑦 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑥 ( .r ‘ 𝑈 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ) |
10 |
4 5 7 9
|
zrhpropd |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑈 ) = ( ℤRHom ‘ 𝑌 ) ) |