Metamath Proof Explorer


Theorem znzrh2

Description: The ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znzrh2.s 𝑆 = ( RSpan ‘ ℤring )
znzrh2.r = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) )
znzrh2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
znzrh2.2 𝐿 = ( ℤRHom ‘ 𝑌 )
Assertion znzrh2 ( 𝑁 ∈ ℕ0𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) )

Proof

Step Hyp Ref Expression
1 znzrh2.s 𝑆 = ( RSpan ‘ ℤring )
2 znzrh2.r = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) )
3 znzrh2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
4 znzrh2.2 𝐿 = ( ℤRHom ‘ 𝑌 )
5 zringring ring ∈ Ring
6 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
7 1 znlidl ( 𝑁 ∈ ℤ → ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) )
8 6 7 syl ( 𝑁 ∈ ℕ0 → ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) )
9 2 oveq2i ( ℤring /s ) = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
10 zringcrng ring ∈ CRing
11 eqid ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring )
12 11 crng2idl ( ℤring ∈ CRing → ( LIdeal ‘ ℤring ) = ( 2Ideal ‘ ℤring ) )
13 10 12 ax-mp ( LIdeal ‘ ℤring ) = ( 2Ideal ‘ ℤring )
14 zringbas ℤ = ( Base ‘ ℤring )
15 eceq2 ( = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) → [ 𝑥 ] = [ 𝑥 ] ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
16 2 15 ax-mp [ 𝑥 ] = [ 𝑥 ] ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) )
17 16 mpteq2i ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
18 9 13 14 17 qusrhm ( ( ℤring ∈ Ring ∧ ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) ∈ ( ℤring RingHom ( ℤring /s ) ) )
19 5 8 18 sylancr ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) ∈ ( ℤring RingHom ( ℤring /s ) ) )
20 1 9 zncrng2 ( 𝑁 ∈ ℤ → ( ℤring /s ) ∈ CRing )
21 crngring ( ( ℤring /s ) ∈ CRing → ( ℤring /s ) ∈ Ring )
22 eqid ( ℤRHom ‘ ( ℤring /s ) ) = ( ℤRHom ‘ ( ℤring /s ) )
23 22 zrhrhmb ( ( ℤring /s ) ∈ Ring → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) ∈ ( ℤring RingHom ( ℤring /s ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) = ( ℤRHom ‘ ( ℤring /s ) ) ) )
24 6 20 21 23 4syl ( 𝑁 ∈ ℕ0 → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) ∈ ( ℤring RingHom ( ℤring /s ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) = ( ℤRHom ‘ ( ℤring /s ) ) ) )
25 19 24 mpbid ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) = ( ℤRHom ‘ ( ℤring /s ) ) )
26 1 9 3 znzrh ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ ( ℤring /s ) ) = ( ℤRHom ‘ 𝑌 ) )
27 25 26 eqtr2d ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) )
28 4 27 eqtrid ( 𝑁 ∈ ℕ0𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ) )