| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znzrh2.s |
⊢ 𝑆 = ( RSpan ‘ ℤring ) |
| 2 |
|
znzrh2.r |
⊢ ∼ = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) |
| 3 |
|
znzrh2.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
| 4 |
|
znzrh2.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
| 5 |
|
zringring |
⊢ ℤring ∈ Ring |
| 6 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 7 |
1
|
znlidl |
⊢ ( 𝑁 ∈ ℤ → ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) |
| 9 |
2
|
oveq2i |
⊢ ( ℤring /s ∼ ) = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
| 10 |
|
zringcrng |
⊢ ℤring ∈ CRing |
| 11 |
|
eqid |
⊢ ( LIdeal ‘ ℤring ) = ( LIdeal ‘ ℤring ) |
| 12 |
11
|
crng2idl |
⊢ ( ℤring ∈ CRing → ( LIdeal ‘ ℤring ) = ( 2Ideal ‘ ℤring ) ) |
| 13 |
10 12
|
ax-mp |
⊢ ( LIdeal ‘ ℤring ) = ( 2Ideal ‘ ℤring ) |
| 14 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 15 |
|
eceq2 |
⊢ ( ∼ = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) → [ 𝑥 ] ∼ = [ 𝑥 ] ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
| 16 |
2 15
|
ax-mp |
⊢ [ 𝑥 ] ∼ = [ 𝑥 ] ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) |
| 17 |
16
|
mpteq2i |
⊢ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
| 18 |
9 13 14 17
|
qusrhm |
⊢ ( ( ℤring ∈ Ring ∧ ( 𝑆 ‘ { 𝑁 } ) ∈ ( LIdeal ‘ ℤring ) ) → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ∈ ( ℤring RingHom ( ℤring /s ∼ ) ) ) |
| 19 |
5 8 18
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ∈ ( ℤring RingHom ( ℤring /s ∼ ) ) ) |
| 20 |
1 9
|
zncrng2 |
⊢ ( 𝑁 ∈ ℤ → ( ℤring /s ∼ ) ∈ CRing ) |
| 21 |
|
crngring |
⊢ ( ( ℤring /s ∼ ) ∈ CRing → ( ℤring /s ∼ ) ∈ Ring ) |
| 22 |
|
eqid |
⊢ ( ℤRHom ‘ ( ℤring /s ∼ ) ) = ( ℤRHom ‘ ( ℤring /s ∼ ) ) |
| 23 |
22
|
zrhrhmb |
⊢ ( ( ℤring /s ∼ ) ∈ Ring → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ∈ ( ℤring RingHom ( ℤring /s ∼ ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( ℤRHom ‘ ( ℤring /s ∼ ) ) ) ) |
| 24 |
6 20 21 23
|
4syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ∈ ( ℤring RingHom ( ℤring /s ∼ ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( ℤRHom ‘ ( ℤring /s ∼ ) ) ) ) |
| 25 |
19 24
|
mpbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( ℤRHom ‘ ( ℤring /s ∼ ) ) ) |
| 26 |
1 9 3
|
znzrh |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ ( ℤring /s ∼ ) ) = ( ℤRHom ‘ 𝑌 ) ) |
| 27 |
25 26
|
eqtr2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤRHom ‘ 𝑌 ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ) |
| 28 |
4 27
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ) |