Step |
Hyp |
Ref |
Expression |
1 |
|
znzrhfo.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
znzrhfo.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
znzrhfo.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
4 |
|
eqidd |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
5 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ℤ = ( Base ‘ ℤring ) ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) |
8 |
|
ovexd |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ∈ V ) |
9 |
|
zringring |
⊢ ℤring ∈ Ring |
10 |
9
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ℤring ∈ Ring ) |
11 |
4 6 7 8 10
|
quslem |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
12 |
|
eqid |
⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) |
13 |
|
eqid |
⊢ ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) = ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) |
14 |
12 1 13
|
znbas |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( Base ‘ 𝑌 ) ) |
15 |
14 2
|
eqtr4di |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = 𝐵 ) |
16 |
|
foeq3 |
⊢ ( ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = 𝐵 → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) ) |
17 |
15 16
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) ) |
18 |
11 17
|
mpbid |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) |
19 |
12 13 1 3
|
znzrh2 |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
20 |
|
foeq1 |
⊢ ( 𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) → ( 𝐿 : ℤ –onto→ 𝐵 ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) ) |
21 |
19 20
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐿 : ℤ –onto→ 𝐵 ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) ) |
22 |
18 21
|
mpbird |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ 𝐵 ) |