Step |
Hyp |
Ref |
Expression |
1 |
|
znzrh2.s |
⊢ 𝑆 = ( RSpan ‘ ℤring ) |
2 |
|
znzrh2.r |
⊢ ∼ = ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) |
3 |
|
znzrh2.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
znzrh2.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
5 |
1 2 3 4
|
znzrh2 |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐿 ‘ 𝐴 ) = ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ‘ 𝐴 ) ) |
7 |
|
eceq1 |
⊢ ( 𝑥 = 𝐴 → [ 𝑥 ] ∼ = [ 𝐴 ] ∼ ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) |
9 |
2
|
ovexi |
⊢ ∼ ∈ V |
10 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 𝐴 ] ∼ ∈ V ) |
11 |
9 10
|
ax-mp |
⊢ [ 𝐴 ] ∼ ∈ V |
12 |
7 8 11
|
fvmpt |
⊢ ( 𝐴 ∈ ℤ → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ∼ ) ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |
13 |
6 12
|
sylan9eq |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ) → ( 𝐿 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |