Step |
Hyp |
Ref |
Expression |
1 |
|
zorn2lem.3 |
⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) |
2 |
|
zorn2lem.4 |
⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } |
3 |
|
zorn2lem.5 |
⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } |
4 |
1
|
tfr2 |
⊢ ( 𝑥 ∈ On → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ‘ ( 𝐹 ↾ 𝑥 ) ) ) |
6 |
1
|
tfr1 |
⊢ 𝐹 Fn On |
7 |
|
fnfun |
⊢ ( 𝐹 Fn On → Fun 𝐹 ) |
8 |
6 7
|
ax-mp |
⊢ Fun 𝐹 |
9 |
|
vex |
⊢ 𝑥 ∈ V |
10 |
|
resfunexg |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ V ) → ( 𝐹 ↾ 𝑥 ) ∈ V ) |
11 |
8 9 10
|
mp2an |
⊢ ( 𝐹 ↾ 𝑥 ) ∈ V |
12 |
|
rneq |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ran 𝑓 = ran ( 𝐹 ↾ 𝑥 ) ) |
13 |
|
df-ima |
⊢ ( 𝐹 “ 𝑥 ) = ran ( 𝐹 ↾ 𝑥 ) |
14 |
12 13
|
eqtr4di |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ran 𝑓 = ( 𝐹 “ 𝑥 ) ) |
15 |
14
|
eleq2d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( 𝑔 ∈ ran 𝑓 ↔ 𝑔 ∈ ( 𝐹 “ 𝑥 ) ) ) |
16 |
15
|
imbi1d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ( 𝑔 ∈ ran 𝑓 → 𝑔 𝑅 𝑧 ) ↔ ( 𝑔 ∈ ( 𝐹 “ 𝑥 ) → 𝑔 𝑅 𝑧 ) ) ) |
17 |
16
|
ralbidv2 |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 ) ) |
18 |
17
|
rabbidv |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } ) |
19 |
18 2 3
|
3eqtr4g |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → 𝐶 = 𝐷 ) |
20 |
19
|
eleq2d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( 𝑢 ∈ 𝐶 ↔ 𝑢 ∈ 𝐷 ) ) |
21 |
20
|
imbi1d |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ( 𝑢 ∈ 𝐶 → ¬ 𝑢 𝑤 𝑣 ) ↔ ( 𝑢 ∈ 𝐷 → ¬ 𝑢 𝑤 𝑣 ) ) ) |
22 |
21
|
ralbidv2 |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ↔ ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ) |
23 |
19 22
|
riotaeqbidv |
⊢ ( 𝑓 = ( 𝐹 ↾ 𝑥 ) → ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) = ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ) |
24 |
|
eqid |
⊢ ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) = ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) |
25 |
|
riotaex |
⊢ ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ∈ V |
26 |
23 24 25
|
fvmpt |
⊢ ( ( 𝐹 ↾ 𝑥 ) ∈ V → ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ) |
27 |
11 26
|
ax-mp |
⊢ ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ‘ ( 𝐹 ↾ 𝑥 ) ) = ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) |
28 |
5 27
|
eqtrdi |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) = ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ) |
29 |
|
simprl |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝑤 We 𝐴 ) |
30 |
|
weso |
⊢ ( 𝑤 We 𝐴 → 𝑤 Or 𝐴 ) |
31 |
30
|
ad2antrl |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝑤 Or 𝐴 ) |
32 |
|
vex |
⊢ 𝑤 ∈ V |
33 |
|
soex |
⊢ ( ( 𝑤 Or 𝐴 ∧ 𝑤 ∈ V ) → 𝐴 ∈ V ) |
34 |
31 32 33
|
sylancl |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝐴 ∈ V ) |
35 |
3 34
|
rabexd |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝐷 ∈ V ) |
36 |
3
|
ssrab3 |
⊢ 𝐷 ⊆ 𝐴 |
37 |
36
|
a1i |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝐷 ⊆ 𝐴 ) |
38 |
|
simprr |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → 𝐷 ≠ ∅ ) |
39 |
|
wereu |
⊢ ( ( 𝑤 We 𝐴 ∧ ( 𝐷 ∈ V ∧ 𝐷 ⊆ 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ∃! 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) |
40 |
29 35 37 38 39
|
syl13anc |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ∃! 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) |
41 |
|
riotacl |
⊢ ( ∃! 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 → ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ∈ 𝐷 ) |
42 |
40 41
|
syl |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( ℩ 𝑣 ∈ 𝐷 ∀ 𝑢 ∈ 𝐷 ¬ 𝑢 𝑤 𝑣 ) ∈ 𝐷 ) |
43 |
28 42
|
eqeltrd |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |