Step |
Hyp |
Ref |
Expression |
1 |
|
zorn2lem.3 |
⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) |
2 |
|
zorn2lem.4 |
⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } |
3 |
|
zorn2lem.5 |
⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } |
4 |
1 2 3
|
zorn2lem1 |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
5 |
|
breq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑔 𝑅 𝑧 ↔ 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
7 |
6 3
|
elrab2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ∧ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
8 |
7
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 → ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) |
9 |
4 8
|
syl |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) |
10 |
1
|
tfr1 |
⊢ 𝐹 Fn On |
11 |
|
onss |
⊢ ( 𝑥 ∈ On → 𝑥 ⊆ On ) |
12 |
|
fnfvima |
⊢ ( ( 𝐹 Fn On ∧ 𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) ) |
13 |
12
|
3expia |
⊢ ( ( 𝐹 Fn On ∧ 𝑥 ⊆ On ) → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) ) ) |
14 |
10 11 13
|
sylancr |
⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) ) ) |
16 |
|
breq1 |
⊢ ( 𝑔 = ( 𝐹 ‘ 𝑦 ) → ( 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
16
|
rspccv |
⊢ ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
9 15 17
|
sylsyld |
⊢ ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴 ∧ 𝐷 ≠ ∅ ) ) → ( 𝑦 ∈ 𝑥 → ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |