| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zorn2lem.3 | ⊢ 𝐹  =  recs ( ( 𝑓  ∈  V  ↦  ( ℩ 𝑣  ∈  𝐶 ∀ 𝑢  ∈  𝐶 ¬  𝑢 𝑤 𝑣 ) ) ) | 
						
							| 2 |  | zorn2lem.4 | ⊢ 𝐶  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ran  𝑓 𝑔 𝑅 𝑧 } | 
						
							| 3 |  | zorn2lem.5 | ⊢ 𝐷  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 } | 
						
							| 4 | 1 2 3 | zorn2lem1 | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐷 ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑔 𝑅 𝑧  ↔  𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 6 | 5 | ralbidv | ⊢ ( 𝑧  =  ( 𝐹 ‘ 𝑥 )  →  ( ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧  ↔  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 7 | 6 3 | elrab2 | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  𝐷  ↔  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐴  ∧  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 8 | 7 | simprbi | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  𝐷  →  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 9 | 4 8 | syl | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) )  →  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 10 | 1 | tfr1 | ⊢ 𝐹  Fn  On | 
						
							| 11 |  | onss | ⊢ ( 𝑥  ∈  On  →  𝑥  ⊆  On ) | 
						
							| 12 |  | fnfvima | ⊢ ( ( 𝐹  Fn  On  ∧  𝑥  ⊆  On  ∧  𝑦  ∈  𝑥 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  𝑥 ) ) | 
						
							| 13 | 12 | 3expia | ⊢ ( ( 𝐹  Fn  On  ∧  𝑥  ⊆  On )  →  ( 𝑦  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 14 | 10 11 13 | sylancr | ⊢ ( 𝑥  ∈  On  →  ( 𝑦  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) )  →  ( 𝑦  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 16 |  | breq1 | ⊢ ( 𝑔  =  ( 𝐹 ‘ 𝑦 )  →  ( 𝑔 𝑅 ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 17 | 16 | rspccv | ⊢ ( ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( 𝐹  “  𝑥 )  →  ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 18 | 9 15 17 | sylsyld | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) )  →  ( 𝑦  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) |