| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zorn2lem.3 | ⊢ 𝐹  =  recs ( ( 𝑓  ∈  V  ↦  ( ℩ 𝑣  ∈  𝐶 ∀ 𝑢  ∈  𝐶 ¬  𝑢 𝑤 𝑣 ) ) ) | 
						
							| 2 |  | zorn2lem.4 | ⊢ 𝐶  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ran  𝑓 𝑔 𝑅 𝑧 } | 
						
							| 3 |  | zorn2lem.5 | ⊢ 𝐷  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 } | 
						
							| 4 | 1 2 3 | zorn2lem2 | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) )  →  ( 𝑦  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) ) )  →  ( 𝑦  ∈  𝑥  →  ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 6 | 3 | ssrab3 | ⊢ 𝐷  ⊆  𝐴 | 
						
							| 7 | 1 2 3 | zorn2lem1 | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐷 ) | 
						
							| 8 | 6 7 | sselid | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 ) | 
						
							| 9 |  | breq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 10 | 9 | biimprcd | ⊢ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 11 |  | poirr | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 )  →  ¬  ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 12 | 10 11 | nsyli | ⊢ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 )  →  ( ( 𝑅  Po  𝐴  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 )  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 13 | 12 | com12 | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 )  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 14 | 8 13 | sylan2 | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) ) )  →  ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐹 ‘ 𝑥 )  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 15 | 5 14 | syld | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝑥  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐷  ≠  ∅ ) ) )  →  ( 𝑦  ∈  𝑥  →  ¬  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 ) ) ) |