Metamath Proof Explorer


Theorem zorn2lem4

Description: Lemma for zorn2 . (Contributed by NM, 3-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( 𝑣𝐶𝑢𝐶 ¬ 𝑢 𝑤 𝑣 ) ) )
zorn2lem.4 𝐶 = { 𝑧𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 }
zorn2lem.5 𝐷 = { 𝑧𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 𝑧 }
Assertion zorn2lem4 ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ∃ 𝑥 ∈ On 𝐷 = ∅ )

Proof

Step Hyp Ref Expression
1 zorn2lem.3 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( 𝑣𝐶𝑢𝐶 ¬ 𝑢 𝑤 𝑣 ) ) )
2 zorn2lem.4 𝐶 = { 𝑧𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 }
3 zorn2lem.5 𝐷 = { 𝑧𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹𝑥 ) 𝑔 𝑅 𝑧 }
4 pm3.24 ¬ ( ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V )
5 df-ne ( 𝐷 ≠ ∅ ↔ ¬ 𝐷 = ∅ )
6 5 ralbii ( ∀ 𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀ 𝑥 ∈ On ¬ 𝐷 = ∅ )
7 df-ral ( ∀ 𝑥 ∈ On 𝐷 ≠ ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) )
8 ralnex ( ∀ 𝑥 ∈ On ¬ 𝐷 = ∅ ↔ ¬ ∃ 𝑥 ∈ On 𝐷 = ∅ )
9 6 7 8 3bitr3i ( ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) ↔ ¬ ∃ 𝑥 ∈ On 𝐷 = ∅ )
10 weso ( 𝑤 We 𝐴𝑤 Or 𝐴 )
11 10 adantr ( ( 𝑤 We 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) ) → 𝑤 Or 𝐴 )
12 vex 𝑤 ∈ V
13 soex ( ( 𝑤 Or 𝐴𝑤 ∈ V ) → 𝐴 ∈ V )
14 11 12 13 sylancl ( ( 𝑤 We 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) ) → 𝐴 ∈ V )
15 1 tfr1 𝐹 Fn On
16 fvelrnb ( 𝐹 Fn On → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ On ( 𝐹𝑥 ) = 𝑦 ) )
17 15 16 ax-mp ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ On ( 𝐹𝑥 ) = 𝑦 )
18 nfv 𝑥 𝑤 We 𝐴
19 nfa1 𝑥𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ )
20 18 19 nfan 𝑥 ( 𝑤 We 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) )
21 nfv 𝑥 𝑦𝐴
22 3 ssrab3 𝐷𝐴
23 1 2 3 zorn2lem1 ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴𝐷 ≠ ∅ ) ) → ( 𝐹𝑥 ) ∈ 𝐷 )
24 22 23 sselid ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴𝐷 ≠ ∅ ) ) → ( 𝐹𝑥 ) ∈ 𝐴 )
25 eleq1 ( ( 𝐹𝑥 ) = 𝑦 → ( ( 𝐹𝑥 ) ∈ 𝐴𝑦𝐴 ) )
26 24 25 syl5ibcom ( ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴𝐷 ≠ ∅ ) ) → ( ( 𝐹𝑥 ) = 𝑦𝑦𝐴 ) )
27 26 exp32 ( 𝑥 ∈ On → ( 𝑤 We 𝐴 → ( 𝐷 ≠ ∅ → ( ( 𝐹𝑥 ) = 𝑦𝑦𝐴 ) ) ) )
28 27 com12 ( 𝑤 We 𝐴 → ( 𝑥 ∈ On → ( 𝐷 ≠ ∅ → ( ( 𝐹𝑥 ) = 𝑦𝑦𝐴 ) ) ) )
29 28 a2d ( 𝑤 We 𝐴 → ( ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ( 𝑥 ∈ On → ( ( 𝐹𝑥 ) = 𝑦𝑦𝐴 ) ) ) )
30 29 spsd ( 𝑤 We 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ( 𝑥 ∈ On → ( ( 𝐹𝑥 ) = 𝑦𝑦𝐴 ) ) ) )
31 30 imp ( ( 𝑤 We 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) ) → ( 𝑥 ∈ On → ( ( 𝐹𝑥 ) = 𝑦𝑦𝐴 ) ) )
32 20 21 31 rexlimd ( ( 𝑤 We 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) ) → ( ∃ 𝑥 ∈ On ( 𝐹𝑥 ) = 𝑦𝑦𝐴 ) )
33 17 32 syl5bi ( ( 𝑤 We 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) ) → ( 𝑦 ∈ ran 𝐹𝑦𝐴 ) )
34 33 ssrdv ( ( 𝑤 We 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) ) → ran 𝐹𝐴 )
35 14 34 ssexd ( ( 𝑤 We 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) ) → ran 𝐹 ∈ V )
36 35 ex ( 𝑤 We 𝐴 → ( ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ran 𝐹 ∈ V ) )
37 36 adantl ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ran 𝐹 ∈ V ) )
38 1 2 3 zorn2lem3 ( ( 𝑅 Po 𝐴 ∧ ( 𝑥 ∈ On ∧ ( 𝑤 We 𝐴𝐷 ≠ ∅ ) ) ) → ( 𝑦𝑥 → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
39 38 exp45 ( 𝑅 Po 𝐴 → ( 𝑥 ∈ On → ( 𝑤 We 𝐴 → ( 𝐷 ≠ ∅ → ( 𝑦𝑥 → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) ) ) )
40 39 com23 ( 𝑅 Po 𝐴 → ( 𝑤 We 𝐴 → ( 𝑥 ∈ On → ( 𝐷 ≠ ∅ → ( 𝑦𝑥 → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) ) ) )
41 40 imp ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( 𝑥 ∈ On → ( 𝐷 ≠ ∅ → ( 𝑦𝑥 → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) ) )
42 41 a2d ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ( 𝑥 ∈ On → ( 𝑦𝑥 → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) ) )
43 42 imp4a ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) )
44 43 alrimdv ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ∀ 𝑦 ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) )
45 44 alimdv ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ∀ 𝑥𝑦 ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ) )
46 r2al ( ∀ 𝑥 ∈ On ∀ 𝑦𝑥 ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ↔ ∀ 𝑥𝑦 ( ( 𝑥 ∈ On ∧ 𝑦𝑥 ) → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
47 45 46 syl6ibr ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ∀ 𝑥 ∈ On ∀ 𝑦𝑥 ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
48 ssid On ⊆ On
49 15 tz7.48lem ( ( On ⊆ On ∧ ∀ 𝑥 ∈ On ∀ 𝑦𝑥 ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) → Fun ( 𝐹 ↾ On ) )
50 48 49 mpan ( ∀ 𝑥 ∈ On ∀ 𝑦𝑥 ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → Fun ( 𝐹 ↾ On ) )
51 fnrel ( 𝐹 Fn On → Rel 𝐹 )
52 15 51 ax-mp Rel 𝐹
53 15 fndmi dom 𝐹 = On
54 53 eqimssi dom 𝐹 ⊆ On
55 relssres ( ( Rel 𝐹 ∧ dom 𝐹 ⊆ On ) → ( 𝐹 ↾ On ) = 𝐹 )
56 52 54 55 mp2an ( 𝐹 ↾ On ) = 𝐹
57 56 cnveqi ( 𝐹 ↾ On ) = 𝐹
58 57 funeqi ( Fun ( 𝐹 ↾ On ) ↔ Fun 𝐹 )
59 50 58 sylib ( ∀ 𝑥 ∈ On ∀ 𝑦𝑥 ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → Fun 𝐹 )
60 47 59 syl6 ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → Fun 𝐹 ) )
61 onprc ¬ On ∈ V
62 funrnex ( dom 𝐹 ∈ V → ( Fun 𝐹 → ran 𝐹 ∈ V ) )
63 62 com12 ( Fun 𝐹 → ( dom 𝐹 ∈ V → ran 𝐹 ∈ V ) )
64 df-rn ran 𝐹 = dom 𝐹
65 64 eleq1i ( ran 𝐹 ∈ V ↔ dom 𝐹 ∈ V )
66 dfdm4 dom 𝐹 = ran 𝐹
67 53 66 eqtr3i On = ran 𝐹
68 67 eleq1i ( On ∈ V ↔ ran 𝐹 ∈ V )
69 63 65 68 3imtr4g ( Fun 𝐹 → ( ran 𝐹 ∈ V → On ∈ V ) )
70 61 69 mtoi ( Fun 𝐹 → ¬ ran 𝐹 ∈ V )
71 60 70 syl6 ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ¬ ran 𝐹 ∈ V ) )
72 37 71 jcad ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ∀ 𝑥 ( 𝑥 ∈ On → 𝐷 ≠ ∅ ) → ( ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V ) ) )
73 9 72 syl5bir ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ( ¬ ∃ 𝑥 ∈ On 𝐷 = ∅ → ( ran 𝐹 ∈ V ∧ ¬ ran 𝐹 ∈ V ) ) )
74 4 73 mt3i ( ( 𝑅 Po 𝐴𝑤 We 𝐴 ) → ∃ 𝑥 ∈ On 𝐷 = ∅ )