| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zorn2lem.3 | ⊢ 𝐹  =  recs ( ( 𝑓  ∈  V  ↦  ( ℩ 𝑣  ∈  𝐶 ∀ 𝑢  ∈  𝐶 ¬  𝑢 𝑤 𝑣 ) ) ) | 
						
							| 2 |  | zorn2lem.4 | ⊢ 𝐶  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ran  𝑓 𝑔 𝑅 𝑧 } | 
						
							| 3 |  | zorn2lem.5 | ⊢ 𝐷  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 } | 
						
							| 4 |  | zorn2lem.7 | ⊢ 𝐻  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 } | 
						
							| 5 | 1 | tfr1 | ⊢ 𝐹  Fn  On | 
						
							| 6 |  | fnfun | ⊢ ( 𝐹  Fn  On  →  Fun  𝐹 ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ Fun  𝐹 | 
						
							| 8 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑠  ∈  ( 𝐹  “  𝑥 ) )  →  ∃ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  =  𝑠 ) | 
						
							| 9 | 7 8 | mpan | ⊢ ( 𝑠  ∈  ( 𝐹  “  𝑥 )  →  ∃ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  =  𝑠 ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝑤  We  𝐴  ∧  𝑥  ∈  On ) | 
						
							| 11 |  | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ | 
						
							| 12 | 10 11 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) | 
						
							| 13 |  | nfv | ⊢ Ⅎ 𝑦 𝑠  ∈  𝐴 | 
						
							| 14 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅  ↔  ∀ 𝑦 ( 𝑦  ∈  𝑥  →  𝐻  ≠  ∅ ) ) | 
						
							| 15 |  | onelon | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  On ) | 
						
							| 16 | 4 | ssrab3 | ⊢ 𝐻  ⊆  𝐴 | 
						
							| 17 | 1 2 4 | zorn2lem1 | ⊢ ( ( 𝑦  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐻  ≠  ∅ ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐻 ) | 
						
							| 18 | 16 17 | sselid | ⊢ ( ( 𝑦  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐻  ≠  ∅ ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐴 ) | 
						
							| 19 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  ( ( 𝐹 ‘ 𝑦 )  ∈  𝐴  ↔  𝑠  ∈  𝐴 ) ) | 
						
							| 20 | 18 19 | imbitrid | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  ( ( 𝑦  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  𝐻  ≠  ∅ ) )  →  𝑠  ∈  𝐴 ) ) | 
						
							| 21 | 15 20 | sylani | ⊢ ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  ( ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  We  𝐴  ∧  𝐻  ≠  ∅ ) )  →  𝑠  ∈  𝐴 ) ) | 
						
							| 22 | 21 | com12 | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  ∧  ( 𝑤  We  𝐴  ∧  𝐻  ≠  ∅ ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  𝑠  ∈  𝐴 ) ) | 
						
							| 23 | 22 | exp43 | ⊢ ( 𝑥  ∈  On  →  ( 𝑦  ∈  𝑥  →  ( 𝑤  We  𝐴  →  ( 𝐻  ≠  ∅  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  𝑠  ∈  𝐴 ) ) ) ) ) | 
						
							| 24 | 23 | com3r | ⊢ ( 𝑤  We  𝐴  →  ( 𝑥  ∈  On  →  ( 𝑦  ∈  𝑥  →  ( 𝐻  ≠  ∅  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  𝑠  ∈  𝐴 ) ) ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  →  ( 𝑦  ∈  𝑥  →  ( 𝐻  ≠  ∅  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  𝑠  ∈  𝐴 ) ) ) ) | 
						
							| 26 | 25 | a2d | ⊢ ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  →  ( ( 𝑦  ∈  𝑥  →  𝐻  ≠  ∅ )  →  ( 𝑦  ∈  𝑥  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  𝑠  ∈  𝐴 ) ) ) ) | 
						
							| 27 | 26 | spsd | ⊢ ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  →  ( ∀ 𝑦 ( 𝑦  ∈  𝑥  →  𝐻  ≠  ∅ )  →  ( 𝑦  ∈  𝑥  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  𝑠  ∈  𝐴 ) ) ) ) | 
						
							| 28 | 14 27 | biimtrid | ⊢ ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  →  ( ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅  →  ( 𝑦  ∈  𝑥  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  𝑠  ∈  𝐴 ) ) ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( 𝑦  ∈  𝑥  →  ( ( 𝐹 ‘ 𝑦 )  =  𝑠  →  𝑠  ∈  𝐴 ) ) ) | 
						
							| 30 | 12 13 29 | rexlimd | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ∃ 𝑦  ∈  𝑥 ( 𝐹 ‘ 𝑦 )  =  𝑠  →  𝑠  ∈  𝐴 ) ) | 
						
							| 31 | 9 30 | syl5 | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( 𝑠  ∈  ( 𝐹  “  𝑥 )  →  𝑠  ∈  𝐴 ) ) | 
						
							| 32 | 31 | ssrdv | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( 𝐹  “  𝑥 )  ⊆  𝐴 ) |