| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zorn2lem.3 | ⊢ 𝐹  =  recs ( ( 𝑓  ∈  V  ↦  ( ℩ 𝑣  ∈  𝐶 ∀ 𝑢  ∈  𝐶 ¬  𝑢 𝑤 𝑣 ) ) ) | 
						
							| 2 |  | zorn2lem.4 | ⊢ 𝐶  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ran  𝑓 𝑔 𝑅 𝑧 } | 
						
							| 3 |  | zorn2lem.5 | ⊢ 𝐷  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 } | 
						
							| 4 |  | zorn2lem.7 | ⊢ 𝐻  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 } | 
						
							| 5 |  | poss | ⊢ ( ( 𝐹  “  𝑥 )  ⊆  𝐴  →  ( 𝑅  Po  𝐴  →  𝑅  Po  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 6 | 1 2 3 4 | zorn2lem5 | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( 𝐹  “  𝑥 )  ⊆  𝐴 ) | 
						
							| 7 | 5 6 | syl11 | ⊢ ( 𝑅  Po  𝐴  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  𝑅  Po  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 8 | 1 | tfr1 | ⊢ 𝐹  Fn  On | 
						
							| 9 |  | fnfun | ⊢ ( 𝐹  Fn  On  →  Fun  𝐹 ) | 
						
							| 10 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑠  ∈  ( 𝐹  “  𝑥 ) )  →  ∃ 𝑏  ∈  𝑥 ( 𝐹 ‘ 𝑏 )  =  𝑠 ) | 
						
							| 11 |  | df-rex | ⊢ ( ∃ 𝑏  ∈  𝑥 ( 𝐹 ‘ 𝑏 )  =  𝑠  ↔  ∃ 𝑏 ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 ) ) | 
						
							| 12 | 10 11 | sylib | ⊢ ( ( Fun  𝐹  ∧  𝑠  ∈  ( 𝐹  “  𝑥 ) )  →  ∃ 𝑏 ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 ) ) | 
						
							| 13 | 12 | ex | ⊢ ( Fun  𝐹  →  ( 𝑠  ∈  ( 𝐹  “  𝑥 )  →  ∃ 𝑏 ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 ) ) ) | 
						
							| 14 |  | fvelima | ⊢ ( ( Fun  𝐹  ∧  𝑟  ∈  ( 𝐹  “  𝑥 ) )  →  ∃ 𝑎  ∈  𝑥 ( 𝐹 ‘ 𝑎 )  =  𝑟 ) | 
						
							| 15 |  | df-rex | ⊢ ( ∃ 𝑎  ∈  𝑥 ( 𝐹 ‘ 𝑎 )  =  𝑟  ↔  ∃ 𝑎 ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) | 
						
							| 16 | 14 15 | sylib | ⊢ ( ( Fun  𝐹  ∧  𝑟  ∈  ( 𝐹  “  𝑥 ) )  →  ∃ 𝑎 ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( Fun  𝐹  →  ( 𝑟  ∈  ( 𝐹  “  𝑥 )  →  ∃ 𝑎 ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) ) | 
						
							| 18 | 13 17 | anim12d | ⊢ ( Fun  𝐹  →  ( ( 𝑠  ∈  ( 𝐹  “  𝑥 )  ∧  𝑟  ∈  ( 𝐹  “  𝑥 ) )  →  ( ∃ 𝑏 ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 )  ∧  ∃ 𝑎 ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) ) ) | 
						
							| 19 | 8 9 18 | mp2b | ⊢ ( ( 𝑠  ∈  ( 𝐹  “  𝑥 )  ∧  𝑟  ∈  ( 𝐹  “  𝑥 ) )  →  ( ∃ 𝑏 ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 )  ∧  ∃ 𝑎 ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) ) | 
						
							| 20 |  | an4 | ⊢ ( ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  ↔  ( ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 )  ∧  ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) ) | 
						
							| 21 | 20 | 2exbii | ⊢ ( ∃ 𝑏 ∃ 𝑎 ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  ↔  ∃ 𝑏 ∃ 𝑎 ( ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 )  ∧  ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) ) | 
						
							| 22 |  | exdistrv | ⊢ ( ∃ 𝑏 ∃ 𝑎 ( ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 )  ∧  ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  ↔  ( ∃ 𝑏 ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 )  ∧  ∃ 𝑎 ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) ) | 
						
							| 23 | 21 22 | bitri | ⊢ ( ∃ 𝑏 ∃ 𝑎 ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  ↔  ( ∃ 𝑏 ( 𝑏  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 )  ∧  ∃ 𝑎 ( 𝑎  ∈  𝑥  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) ) | 
						
							| 24 | 19 23 | sylibr | ⊢ ( ( 𝑠  ∈  ( 𝐹  “  𝑥 )  ∧  𝑟  ∈  ( 𝐹  “  𝑥 ) )  →  ∃ 𝑏 ∃ 𝑎 ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) ) ) | 
						
							| 25 | 4 | neeq1i | ⊢ ( 𝐻  ≠  ∅  ↔  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) | 
						
							| 26 | 25 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅  ↔  ∀ 𝑦  ∈  𝑥 { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) | 
						
							| 27 |  | imaeq2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝐹  “  𝑦 )  =  ( 𝐹  “  𝑏 ) ) | 
						
							| 28 | 27 | raleqdv | ⊢ ( 𝑦  =  𝑏  →  ( ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧  ↔  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 ) ) | 
						
							| 29 | 28 | rabbidv | ⊢ ( 𝑦  =  𝑏  →  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 }  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 } ) | 
						
							| 30 | 29 | neeq1d | ⊢ ( 𝑦  =  𝑏  →  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ↔  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) | 
						
							| 31 | 30 | rspccv | ⊢ ( ∀ 𝑦  ∈  𝑥 { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 }  ≠  ∅  →  ( 𝑏  ∈  𝑥  →  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) | 
						
							| 32 |  | imaeq2 | ⊢ ( 𝑦  =  𝑎  →  ( 𝐹  “  𝑦 )  =  ( 𝐹  “  𝑎 ) ) | 
						
							| 33 | 32 | raleqdv | ⊢ ( 𝑦  =  𝑎  →  ( ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧  ↔  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 ) ) | 
						
							| 34 | 33 | rabbidv | ⊢ ( 𝑦  =  𝑎  →  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 }  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 } ) | 
						
							| 35 | 34 | neeq1d | ⊢ ( 𝑦  =  𝑎  →  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ↔  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) | 
						
							| 36 | 35 | rspccv | ⊢ ( ∀ 𝑦  ∈  𝑥 { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 }  ≠  ∅  →  ( 𝑎  ∈  𝑥  →  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) | 
						
							| 37 | 31 36 | anim12d | ⊢ ( ∀ 𝑦  ∈  𝑥 { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 }  ≠  ∅  →  ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) ) | 
						
							| 38 | 26 37 | sylbi | ⊢ ( ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅  →  ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) ) | 
						
							| 39 |  | onelon | ⊢ ( ( 𝑥  ∈  On  ∧  𝑏  ∈  𝑥 )  →  𝑏  ∈  On ) | 
						
							| 40 |  | onelon | ⊢ ( ( 𝑥  ∈  On  ∧  𝑎  ∈  𝑥 )  →  𝑎  ∈  On ) | 
						
							| 41 | 39 40 | anim12dan | ⊢ ( ( 𝑥  ∈  On  ∧  ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 ) )  →  ( 𝑏  ∈  On  ∧  𝑎  ∈  On ) ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝑥  ∈  On  →  ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( 𝑏  ∈  On  ∧  𝑎  ∈  On ) ) ) | 
						
							| 43 |  | eloni | ⊢ ( 𝑏  ∈  On  →  Ord  𝑏 ) | 
						
							| 44 |  | eloni | ⊢ ( 𝑎  ∈  On  →  Ord  𝑎 ) | 
						
							| 45 |  | ordtri3or | ⊢ ( ( Ord  𝑏  ∧  Ord  𝑎 )  →  ( 𝑏  ∈  𝑎  ∨  𝑏  =  𝑎  ∨  𝑎  ∈  𝑏 ) ) | 
						
							| 46 | 43 44 45 | syl2an | ⊢ ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  →  ( 𝑏  ∈  𝑎  ∨  𝑏  =  𝑎  ∨  𝑎  ∈  𝑏 ) ) | 
						
							| 47 |  | eqid | ⊢ { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 } | 
						
							| 48 | 1 2 47 | zorn2lem2 | ⊢ ( ( 𝑎  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( 𝑏  ∈  𝑎  →  ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 49 | 48 | adantll | ⊢ ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( 𝑏  ∈  𝑎  →  ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 50 |  | breq12 | ⊢ ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 )  ↔  𝑠 𝑅 𝑟 ) ) | 
						
							| 51 | 50 | biimpcd | ⊢ ( ( 𝐹 ‘ 𝑏 ) 𝑅 ( 𝐹 ‘ 𝑎 )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  𝑠 𝑅 𝑟 ) ) | 
						
							| 52 | 49 51 | syl6 | ⊢ ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( 𝑏  ∈  𝑎  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  𝑠 𝑅 𝑟 ) ) ) | 
						
							| 53 | 52 | com23 | ⊢ ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑏  ∈  𝑎  →  𝑠 𝑅 𝑟 ) ) ) | 
						
							| 54 | 53 | adantrrl | ⊢ ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑏  ∈  𝑎  →  𝑠 𝑅 𝑟 ) ) ) | 
						
							| 55 | 54 | imp | ⊢ ( ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  →  ( 𝑏  ∈  𝑎  →  𝑠 𝑅 𝑟 ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑏  =  𝑎  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 57 |  | eqeq12 | ⊢ ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑎 )  ↔  𝑠  =  𝑟 ) ) | 
						
							| 58 | 56 57 | imbitrid | ⊢ ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑏  =  𝑎  →  𝑠  =  𝑟 ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  →  ( 𝑏  =  𝑎  →  𝑠  =  𝑟 ) ) | 
						
							| 60 |  | eqid | ⊢ { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 } | 
						
							| 61 | 1 2 60 | zorn2lem2 | ⊢ ( ( 𝑏  ∈  On  ∧  ( 𝑤  We  𝐴  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( 𝑎  ∈  𝑏  →  ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 62 | 61 | adantlr | ⊢ ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( 𝑎  ∈  𝑏  →  ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 63 |  | breq12 | ⊢ ( ( ( 𝐹 ‘ 𝑎 )  =  𝑟  ∧  ( 𝐹 ‘ 𝑏 )  =  𝑠 )  →  ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 )  ↔  𝑟 𝑅 𝑠 ) ) | 
						
							| 64 | 63 | ancoms | ⊢ ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 )  ↔  𝑟 𝑅 𝑠 ) ) | 
						
							| 65 | 64 | biimpcd | ⊢ ( ( 𝐹 ‘ 𝑎 ) 𝑅 ( 𝐹 ‘ 𝑏 )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  𝑟 𝑅 𝑠 ) ) | 
						
							| 66 | 62 65 | syl6 | ⊢ ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( 𝑎  ∈  𝑏  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  𝑟 𝑅 𝑠 ) ) ) | 
						
							| 67 | 66 | com23 | ⊢ ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑎  ∈  𝑏  →  𝑟 𝑅 𝑠 ) ) ) | 
						
							| 68 | 67 | adantrrr | ⊢ ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑎  ∈  𝑏  →  𝑟 𝑅 𝑠 ) ) ) | 
						
							| 69 | 68 | imp | ⊢ ( ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  →  ( 𝑎  ∈  𝑏  →  𝑟 𝑅 𝑠 ) ) | 
						
							| 70 | 55 59 69 | 3orim123d | ⊢ ( ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  →  ( ( 𝑏  ∈  𝑎  ∨  𝑏  =  𝑎  ∨  𝑎  ∈  𝑏 )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) | 
						
							| 71 | 46 70 | syl5 | ⊢ ( ( ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  ∧  ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) ) )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  →  ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) | 
						
							| 72 | 71 | exp31 | ⊢ ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  →  ( ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) ) ) | 
						
							| 73 | 72 | com4r | ⊢ ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  →  ( ( 𝑏  ∈  On  ∧  𝑎  ∈  On )  →  ( ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) ) ) | 
						
							| 74 | 42 42 73 | syl6c | ⊢ ( 𝑥  ∈  On  →  ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( ( 𝑤  We  𝐴  ∧  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) ) ) | 
						
							| 75 | 74 | exp4a | ⊢ ( 𝑥  ∈  On  →  ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( 𝑤  We  𝐴  →  ( ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) ) ) ) | 
						
							| 76 | 75 | com3r | ⊢ ( 𝑤  We  𝐴  →  ( 𝑥  ∈  On  →  ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) ) ) ) | 
						
							| 77 | 76 | imp | ⊢ ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  →  ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) ) ) | 
						
							| 78 | 77 | a2d | ⊢ ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  →  ( ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑏 ) 𝑔 𝑅 𝑧 }  ≠  ∅  ∧  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑎 ) 𝑔 𝑅 𝑧 }  ≠  ∅ ) )  →  ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) ) ) | 
						
							| 79 | 38 78 | syl5 | ⊢ ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  →  ( ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅  →  ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  →  ( ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) ) ) | 
						
							| 80 | 79 | imp4b | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) | 
						
							| 81 | 80 | exlimdvv | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ∃ 𝑏 ∃ 𝑎 ( ( 𝑏  ∈  𝑥  ∧  𝑎  ∈  𝑥 )  ∧  ( ( 𝐹 ‘ 𝑏 )  =  𝑠  ∧  ( 𝐹 ‘ 𝑎 )  =  𝑟 ) )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) | 
						
							| 82 | 24 81 | syl5 | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ( 𝑠  ∈  ( 𝐹  “  𝑥 )  ∧  𝑟  ∈  ( 𝐹  “  𝑥 ) )  →  ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) | 
						
							| 83 | 82 | ralrimivv | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ∀ 𝑠  ∈  ( 𝐹  “  𝑥 ) ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) | 
						
							| 84 | 7 83 | jca2 | ⊢ ( 𝑅  Po  𝐴  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( 𝑅  Po  ( 𝐹  “  𝑥 )  ∧  ∀ 𝑠  ∈  ( 𝐹  “  𝑥 ) ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) ) | 
						
							| 85 |  | df-so | ⊢ ( 𝑅  Or  ( 𝐹  “  𝑥 )  ↔  ( 𝑅  Po  ( 𝐹  “  𝑥 )  ∧  ∀ 𝑠  ∈  ( 𝐹  “  𝑥 ) ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑠 𝑅 𝑟  ∨  𝑠  =  𝑟  ∨  𝑟 𝑅 𝑠 ) ) ) | 
						
							| 86 | 84 85 | imbitrrdi | ⊢ ( 𝑅  Po  𝐴  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  𝑅  Or  ( 𝐹  “  𝑥 ) ) ) |