Step |
Hyp |
Ref |
Expression |
1 |
|
zorn2lem.3 |
⊢ 𝐹 = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑤 𝑣 ) ) ) |
2 |
|
zorn2lem.4 |
⊢ 𝐶 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ran 𝑓 𝑔 𝑅 𝑧 } |
3 |
|
zorn2lem.5 |
⊢ 𝐷 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } |
4 |
|
zorn2lem.7 |
⊢ 𝐻 = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } |
5 |
|
ween |
⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑤 𝑤 We 𝐴 ) |
6 |
1 2 3
|
zorn2lem4 |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑤 We 𝐴 ) → ∃ 𝑥 ∈ On 𝐷 = ∅ ) |
7 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑦 ) ) |
8 |
7
|
raleqdv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 ) ) |
9 |
8
|
rabbidv |
⊢ ( 𝑥 = 𝑦 → { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } = { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑦 ) 𝑔 𝑅 𝑧 } ) |
10 |
9 3 4
|
3eqtr4g |
⊢ ( 𝑥 = 𝑦 → 𝐷 = 𝐻 ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐷 = ∅ ↔ 𝐻 = ∅ ) ) |
12 |
11
|
onminex |
⊢ ( ∃ 𝑥 ∈ On 𝐷 = ∅ → ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝐻 = ∅ ) ) |
13 |
|
df-ne |
⊢ ( 𝐻 ≠ ∅ ↔ ¬ 𝐻 = ∅ ) |
14 |
13
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ↔ ∀ 𝑦 ∈ 𝑥 ¬ 𝐻 = ∅ ) |
15 |
14
|
anbi2i |
⊢ ( ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ↔ ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝐻 = ∅ ) ) |
16 |
15
|
rexbii |
⊢ ( ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ↔ ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 ¬ 𝐻 = ∅ ) ) |
17 |
12 16
|
sylibr |
⊢ ( ∃ 𝑥 ∈ On 𝐷 = ∅ → ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) |
18 |
1 2 3 4
|
zorn2lem5 |
⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) |
19 |
18
|
a1i |
⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
20 |
1 2 3 4
|
zorn2lem6 |
⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) |
21 |
19 20
|
jcad |
⊢ ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ∧ 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) ) |
22 |
1
|
tfr1 |
⊢ 𝐹 Fn On |
23 |
|
fnfun |
⊢ ( 𝐹 Fn On → Fun 𝐹 ) |
24 |
|
vex |
⊢ 𝑥 ∈ V |
25 |
24
|
funimaex |
⊢ ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ V ) |
26 |
22 23 25
|
mp2b |
⊢ ( 𝐹 “ 𝑥 ) ∈ V |
27 |
|
sseq1 |
⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( 𝑠 ⊆ 𝐴 ↔ ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ) ) |
28 |
|
soeq2 |
⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( 𝑅 Or 𝑠 ↔ 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) |
29 |
27 28
|
anbi12d |
⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) ↔ ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ∧ 𝑅 Or ( 𝐹 “ 𝑥 ) ) ) ) |
30 |
|
raleq |
⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ↔ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) |
31 |
30
|
rexbidv |
⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ↔ ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) |
32 |
29 31
|
imbi12d |
⊢ ( 𝑠 = ( 𝐹 “ 𝑥 ) → ( ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ↔ ( ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ∧ 𝑅 Or ( 𝐹 “ 𝑥 ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ) |
33 |
26 32
|
spcv |
⊢ ( ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ( ( ( 𝐹 “ 𝑥 ) ⊆ 𝐴 ∧ 𝑅 Or ( 𝐹 “ 𝑥 ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) |
34 |
21 33
|
sylan9 |
⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) |
35 |
34
|
adantld |
⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( ( 𝐷 = ∅ ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) |
36 |
35
|
imp |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ ( 𝐷 = ∅ ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) |
37 |
|
noel |
⊢ ¬ 𝑏 ∈ ∅ |
38 |
18
|
sseld |
⊢ ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → 𝑟 ∈ 𝐴 ) ) |
39 |
|
3anass |
⊢ ( ( 𝑟 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ↔ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) |
40 |
|
potr |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ( 𝑟 𝑅 𝑎 ∧ 𝑎 𝑅 𝑏 ) → 𝑟 𝑅 𝑏 ) ) |
41 |
39 40
|
sylan2br |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) → ( ( 𝑟 𝑅 𝑎 ∧ 𝑎 𝑅 𝑏 ) → 𝑟 𝑅 𝑏 ) ) |
42 |
41
|
expcomd |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) → ( 𝑎 𝑅 𝑏 → ( 𝑟 𝑅 𝑎 → 𝑟 𝑅 𝑏 ) ) ) |
43 |
42
|
imp |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ 𝑎 𝑅 𝑏 ) → ( 𝑟 𝑅 𝑎 → 𝑟 𝑅 𝑏 ) ) |
44 |
|
breq1 |
⊢ ( 𝑟 = 𝑎 → ( 𝑟 𝑅 𝑏 ↔ 𝑎 𝑅 𝑏 ) ) |
45 |
44
|
biimprcd |
⊢ ( 𝑎 𝑅 𝑏 → ( 𝑟 = 𝑎 → 𝑟 𝑅 𝑏 ) ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ 𝑎 𝑅 𝑏 ) → ( 𝑟 = 𝑎 → 𝑟 𝑅 𝑏 ) ) |
47 |
43 46
|
jaod |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ( 𝑟 ∈ 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ 𝑎 𝑅 𝑏 ) → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) |
48 |
47
|
exp42 |
⊢ ( 𝑅 Po 𝐴 → ( 𝑟 ∈ 𝐴 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑎 𝑅 𝑏 → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) ) ) |
49 |
38 48
|
sylan9r |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑎 𝑅 𝑏 → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) ) ) |
50 |
49
|
com24 |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑎 𝑅 𝑏 → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) ) ) |
51 |
50
|
com23 |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( 𝑎 𝑅 𝑏 → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) ) ) |
52 |
51
|
imp31 |
⊢ ( ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑏 ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑟 𝑅 𝑏 ) ) ) |
53 |
52
|
a2d |
⊢ ( ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑏 ) → ( ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ( 𝑟 ∈ ( 𝐹 “ 𝑥 ) → 𝑟 𝑅 𝑏 ) ) ) |
54 |
53
|
ralimdv2 |
⊢ ( ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑏 ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) 𝑟 𝑅 𝑏 ) ) |
55 |
|
breq1 |
⊢ ( 𝑟 = 𝑔 → ( 𝑟 𝑅 𝑏 ↔ 𝑔 𝑅 𝑏 ) ) |
56 |
55
|
cbvralvw |
⊢ ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) 𝑟 𝑅 𝑏 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) |
57 |
|
breq2 |
⊢ ( 𝑧 = 𝑏 → ( 𝑔 𝑅 𝑧 ↔ 𝑔 𝑅 𝑏 ) ) |
58 |
57
|
ralbidv |
⊢ ( 𝑧 = 𝑏 → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 ↔ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) ) |
59 |
58
|
elrab |
⊢ ( 𝑏 ∈ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } ↔ ( 𝑏 ∈ 𝐴 ∧ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) ) |
60 |
3
|
eqeq1i |
⊢ ( 𝐷 = ∅ ↔ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } = ∅ ) |
61 |
|
eleq2 |
⊢ ( { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } = ∅ → ( 𝑏 ∈ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } ↔ 𝑏 ∈ ∅ ) ) |
62 |
60 61
|
sylbi |
⊢ ( 𝐷 = ∅ → ( 𝑏 ∈ { 𝑧 ∈ 𝐴 ∣ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑧 } ↔ 𝑏 ∈ ∅ ) ) |
63 |
59 62
|
bitr3id |
⊢ ( 𝐷 = ∅ → ( ( 𝑏 ∈ 𝐴 ∧ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) ↔ 𝑏 ∈ ∅ ) ) |
64 |
63
|
biimpd |
⊢ ( 𝐷 = ∅ → ( ( 𝑏 ∈ 𝐴 ∧ ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 ) → 𝑏 ∈ ∅ ) ) |
65 |
64
|
expdimp |
⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑔 ∈ ( 𝐹 “ 𝑥 ) 𝑔 𝑅 𝑏 → 𝑏 ∈ ∅ ) ) |
66 |
56 65
|
syl5bi |
⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) 𝑟 𝑅 𝑏 → 𝑏 ∈ ∅ ) ) |
67 |
54 66
|
sylan9r |
⊢ ( ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ∧ 𝑎 𝑅 𝑏 ) ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑏 ∈ ∅ ) ) |
68 |
67
|
exp32 |
⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → 𝑏 ∈ ∅ ) ) ) ) |
69 |
68
|
com34 |
⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ( 𝑎 𝑅 𝑏 → 𝑏 ∈ ∅ ) ) ) ) |
70 |
69
|
imp31 |
⊢ ( ( ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ( 𝑎 𝑅 𝑏 → 𝑏 ∈ ∅ ) ) |
71 |
37 70
|
mtoi |
⊢ ( ( ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) ∧ ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) ) ∧ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ¬ 𝑎 𝑅 𝑏 ) |
72 |
71
|
exp42 |
⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
73 |
72
|
exp4a |
⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑎 ∈ 𝐴 → ( 𝑏 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) |
74 |
73
|
com34 |
⊢ ( ( 𝐷 = ∅ ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑏 ∈ 𝐴 → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) |
75 |
74
|
ex |
⊢ ( 𝐷 = ∅ → ( 𝑏 ∈ 𝐴 → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑏 ∈ 𝐴 → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) ) |
76 |
75
|
com4r |
⊢ ( 𝑏 ∈ 𝐴 → ( 𝐷 = ∅ → ( 𝑏 ∈ 𝐴 → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) ) |
77 |
76
|
pm2.43a |
⊢ ( 𝑏 ∈ 𝐴 → ( 𝐷 = ∅ → ( ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) ) |
78 |
77
|
impd |
⊢ ( 𝑏 ∈ 𝐴 → ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
79 |
78
|
com4l |
⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ( 𝑏 ∈ 𝐴 → ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
80 |
79
|
impd |
⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( ( 𝑎 ∈ 𝐴 ∧ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ( 𝑏 ∈ 𝐴 → ¬ 𝑎 𝑅 𝑏 ) ) ) |
81 |
80
|
ralrimdv |
⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( ( 𝑎 ∈ 𝐴 ∧ ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) → ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
82 |
81
|
expd |
⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( 𝑎 ∈ 𝐴 → ( ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) |
83 |
82
|
reximdvai |
⊢ ( ( 𝐷 = ∅ ∧ ( 𝑅 Po 𝐴 ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
84 |
83
|
exp32 |
⊢ ( 𝐷 = ∅ → ( 𝑅 Po 𝐴 → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
85 |
84
|
com12 |
⊢ ( 𝑅 Po 𝐴 → ( 𝐷 = ∅ → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
86 |
85
|
adantr |
⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( 𝐷 = ∅ → ( ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
87 |
86
|
imp32 |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ ( 𝐷 = ∅ ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ( ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ ( 𝐹 “ 𝑥 ) ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
88 |
36 87
|
mpd |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ ( 𝐷 = ∅ ∧ ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) |
89 |
88
|
exp45 |
⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( 𝐷 = ∅ → ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
90 |
89
|
com23 |
⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ( ( 𝑤 We 𝐴 ∧ 𝑥 ∈ On ) → ( 𝐷 = ∅ → ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
91 |
90
|
expdimp |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ( 𝑥 ∈ On → ( 𝐷 = ∅ → ( ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) ) |
92 |
91
|
imp4a |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ( 𝑥 ∈ On → ( ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) |
93 |
92
|
com3l |
⊢ ( 𝑥 ∈ On → ( ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) ) |
94 |
93
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ On ( 𝐷 = ∅ ∧ ∀ 𝑦 ∈ 𝑥 𝐻 ≠ ∅ ) → ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
95 |
6 17 94
|
3syl |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑤 We 𝐴 ) → ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
96 |
95
|
adantlr |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
97 |
96
|
pm2.43i |
⊢ ( ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) ∧ 𝑤 We 𝐴 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) |
98 |
97
|
expcom |
⊢ ( 𝑤 We 𝐴 → ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
99 |
98
|
exlimiv |
⊢ ( ∃ 𝑤 𝑤 We 𝐴 → ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
100 |
5 99
|
sylbi |
⊢ ( 𝐴 ∈ dom card → ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) ) |
101 |
100
|
3impib |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀ 𝑠 ( ( 𝑠 ⊆ 𝐴 ∧ 𝑅 Or 𝑠 ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑟 ∈ 𝑠 ( 𝑟 𝑅 𝑎 ∨ 𝑟 = 𝑎 ) ) ) → ∃ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ¬ 𝑎 𝑅 𝑏 ) |