| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zorn2lem.3 | ⊢ 𝐹  =  recs ( ( 𝑓  ∈  V  ↦  ( ℩ 𝑣  ∈  𝐶 ∀ 𝑢  ∈  𝐶 ¬  𝑢 𝑤 𝑣 ) ) ) | 
						
							| 2 |  | zorn2lem.4 | ⊢ 𝐶  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ran  𝑓 𝑔 𝑅 𝑧 } | 
						
							| 3 |  | zorn2lem.5 | ⊢ 𝐷  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 } | 
						
							| 4 |  | zorn2lem.7 | ⊢ 𝐻  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 } | 
						
							| 5 |  | ween | ⊢ ( 𝐴  ∈  dom  card  ↔  ∃ 𝑤 𝑤  We  𝐴 ) | 
						
							| 6 | 1 2 3 | zorn2lem4 | ⊢ ( ( 𝑅  Po  𝐴  ∧  𝑤  We  𝐴 )  →  ∃ 𝑥  ∈  On 𝐷  =  ∅ ) | 
						
							| 7 |  | imaeq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐹  “  𝑥 )  =  ( 𝐹  “  𝑦 ) ) | 
						
							| 8 | 7 | raleqdv | ⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧  ↔  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 ) ) | 
						
							| 9 | 8 | rabbidv | ⊢ ( 𝑥  =  𝑦  →  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 }  =  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑦 ) 𝑔 𝑅 𝑧 } ) | 
						
							| 10 | 9 3 4 | 3eqtr4g | ⊢ ( 𝑥  =  𝑦  →  𝐷  =  𝐻 ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐷  =  ∅  ↔  𝐻  =  ∅ ) ) | 
						
							| 12 | 11 | onminex | ⊢ ( ∃ 𝑥  ∈  On 𝐷  =  ∅  →  ∃ 𝑥  ∈  On ( 𝐷  =  ∅  ∧  ∀ 𝑦  ∈  𝑥 ¬  𝐻  =  ∅ ) ) | 
						
							| 13 |  | df-ne | ⊢ ( 𝐻  ≠  ∅  ↔  ¬  𝐻  =  ∅ ) | 
						
							| 14 | 13 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅  ↔  ∀ 𝑦  ∈  𝑥 ¬  𝐻  =  ∅ ) | 
						
							| 15 | 14 | anbi2i | ⊢ ( ( 𝐷  =  ∅  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  ↔  ( 𝐷  =  ∅  ∧  ∀ 𝑦  ∈  𝑥 ¬  𝐻  =  ∅ ) ) | 
						
							| 16 | 15 | rexbii | ⊢ ( ∃ 𝑥  ∈  On ( 𝐷  =  ∅  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  ↔  ∃ 𝑥  ∈  On ( 𝐷  =  ∅  ∧  ∀ 𝑦  ∈  𝑥 ¬  𝐻  =  ∅ ) ) | 
						
							| 17 | 12 16 | sylibr | ⊢ ( ∃ 𝑥  ∈  On 𝐷  =  ∅  →  ∃ 𝑥  ∈  On ( 𝐷  =  ∅  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) | 
						
							| 18 | 1 2 3 4 | zorn2lem5 | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( 𝐹  “  𝑥 )  ⊆  𝐴 ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑅  Po  𝐴  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( 𝐹  “  𝑥 )  ⊆  𝐴 ) ) | 
						
							| 20 | 1 2 3 4 | zorn2lem6 | ⊢ ( 𝑅  Po  𝐴  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  𝑅  Or  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 21 | 19 20 | jcad | ⊢ ( 𝑅  Po  𝐴  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ( 𝐹  “  𝑥 )  ⊆  𝐴  ∧  𝑅  Or  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 22 | 1 | tfr1 | ⊢ 𝐹  Fn  On | 
						
							| 23 |  | fnfun | ⊢ ( 𝐹  Fn  On  →  Fun  𝐹 ) | 
						
							| 24 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 25 | 24 | funimaex | ⊢ ( Fun  𝐹  →  ( 𝐹  “  𝑥 )  ∈  V ) | 
						
							| 26 | 22 23 25 | mp2b | ⊢ ( 𝐹  “  𝑥 )  ∈  V | 
						
							| 27 |  | sseq1 | ⊢ ( 𝑠  =  ( 𝐹  “  𝑥 )  →  ( 𝑠  ⊆  𝐴  ↔  ( 𝐹  “  𝑥 )  ⊆  𝐴 ) ) | 
						
							| 28 |  | soeq2 | ⊢ ( 𝑠  =  ( 𝐹  “  𝑥 )  →  ( 𝑅  Or  𝑠  ↔  𝑅  Or  ( 𝐹  “  𝑥 ) ) ) | 
						
							| 29 | 27 28 | anbi12d | ⊢ ( 𝑠  =  ( 𝐹  “  𝑥 )  →  ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  ↔  ( ( 𝐹  “  𝑥 )  ⊆  𝐴  ∧  𝑅  Or  ( 𝐹  “  𝑥 ) ) ) ) | 
						
							| 30 |  | raleq | ⊢ ( 𝑠  =  ( 𝐹  “  𝑥 )  →  ( ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  ↔  ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) ) | 
						
							| 31 | 30 | rexbidv | ⊢ ( 𝑠  =  ( 𝐹  “  𝑥 )  →  ( ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  ↔  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) ) | 
						
							| 32 | 29 31 | imbi12d | ⊢ ( 𝑠  =  ( 𝐹  “  𝑥 )  →  ( ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) )  ↔  ( ( ( 𝐹  “  𝑥 )  ⊆  𝐴  ∧  𝑅  Or  ( 𝐹  “  𝑥 ) )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) ) ) | 
						
							| 33 | 26 32 | spcv | ⊢ ( ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) )  →  ( ( ( 𝐹  “  𝑥 )  ⊆  𝐴  ∧  𝑅  Or  ( 𝐹  “  𝑥 ) )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) ) | 
						
							| 34 | 21 33 | sylan9 | ⊢ ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) ) | 
						
							| 35 | 34 | adantld | ⊢ ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  →  ( ( 𝐷  =  ∅  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  ( 𝐷  =  ∅  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) | 
						
							| 37 |  | noel | ⊢ ¬  𝑏  ∈  ∅ | 
						
							| 38 | 18 | sseld | ⊢ ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( 𝑟  ∈  ( 𝐹  “  𝑥 )  →  𝑟  ∈  𝐴 ) ) | 
						
							| 39 |  | 3anass | ⊢ ( ( 𝑟  ∈  𝐴  ∧  𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  ↔  ( 𝑟  ∈  𝐴  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) ) ) | 
						
							| 40 |  | potr | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝑟  ∈  𝐴  ∧  𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  →  ( ( 𝑟 𝑅 𝑎  ∧  𝑎 𝑅 𝑏 )  →  𝑟 𝑅 𝑏 ) ) | 
						
							| 41 | 39 40 | sylan2br | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝑟  ∈  𝐴  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) ) )  →  ( ( 𝑟 𝑅 𝑎  ∧  𝑎 𝑅 𝑏 )  →  𝑟 𝑅 𝑏 ) ) | 
						
							| 42 | 41 | expcomd | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( 𝑟  ∈  𝐴  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) ) )  →  ( 𝑎 𝑅 𝑏  →  ( 𝑟 𝑅 𝑎  →  𝑟 𝑅 𝑏 ) ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ( 𝑟  ∈  𝐴  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) ) )  ∧  𝑎 𝑅 𝑏 )  →  ( 𝑟 𝑅 𝑎  →  𝑟 𝑅 𝑏 ) ) | 
						
							| 44 |  | breq1 | ⊢ ( 𝑟  =  𝑎  →  ( 𝑟 𝑅 𝑏  ↔  𝑎 𝑅 𝑏 ) ) | 
						
							| 45 | 44 | biimprcd | ⊢ ( 𝑎 𝑅 𝑏  →  ( 𝑟  =  𝑎  →  𝑟 𝑅 𝑏 ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ( 𝑟  ∈  𝐴  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) ) )  ∧  𝑎 𝑅 𝑏 )  →  ( 𝑟  =  𝑎  →  𝑟 𝑅 𝑏 ) ) | 
						
							| 47 | 43 46 | jaod | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ( 𝑟  ∈  𝐴  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) ) )  ∧  𝑎 𝑅 𝑏 )  →  ( ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  𝑟 𝑅 𝑏 ) ) | 
						
							| 48 | 47 | exp42 | ⊢ ( 𝑅  Po  𝐴  →  ( 𝑟  ∈  𝐴  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( 𝑎 𝑅 𝑏  →  ( ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  𝑟 𝑅 𝑏 ) ) ) ) ) | 
						
							| 49 | 38 48 | sylan9r | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ( 𝑟  ∈  ( 𝐹  “  𝑥 )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( 𝑎 𝑅 𝑏  →  ( ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  𝑟 𝑅 𝑏 ) ) ) ) ) | 
						
							| 50 | 49 | com24 | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ( 𝑎 𝑅 𝑏  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( 𝑟  ∈  ( 𝐹  “  𝑥 )  →  ( ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  𝑟 𝑅 𝑏 ) ) ) ) ) | 
						
							| 51 | 50 | com23 | ⊢ ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( 𝑎 𝑅 𝑏  →  ( 𝑟  ∈  ( 𝐹  “  𝑥 )  →  ( ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  𝑟 𝑅 𝑏 ) ) ) ) ) | 
						
							| 52 | 51 | imp31 | ⊢ ( ( ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  ∧  𝑎 𝑅 𝑏 )  →  ( 𝑟  ∈  ( 𝐹  “  𝑥 )  →  ( ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  𝑟 𝑅 𝑏 ) ) ) | 
						
							| 53 | 52 | a2d | ⊢ ( ( ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  ∧  𝑎 𝑅 𝑏 )  →  ( ( 𝑟  ∈  ( 𝐹  “  𝑥 )  →  ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) )  →  ( 𝑟  ∈  ( 𝐹  “  𝑥 )  →  𝑟 𝑅 𝑏 ) ) ) | 
						
							| 54 | 53 | ralimdv2 | ⊢ ( ( ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  ∧  𝑎 𝑅 𝑏 )  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) 𝑟 𝑅 𝑏 ) ) | 
						
							| 55 |  | breq1 | ⊢ ( 𝑟  =  𝑔  →  ( 𝑟 𝑅 𝑏  ↔  𝑔 𝑅 𝑏 ) ) | 
						
							| 56 | 55 | cbvralvw | ⊢ ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) 𝑟 𝑅 𝑏  ↔  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑏 ) | 
						
							| 57 |  | breq2 | ⊢ ( 𝑧  =  𝑏  →  ( 𝑔 𝑅 𝑧  ↔  𝑔 𝑅 𝑏 ) ) | 
						
							| 58 | 57 | ralbidv | ⊢ ( 𝑧  =  𝑏  →  ( ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧  ↔  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑏 ) ) | 
						
							| 59 | 58 | elrab | ⊢ ( 𝑏  ∈  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 }  ↔  ( 𝑏  ∈  𝐴  ∧  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑏 ) ) | 
						
							| 60 | 3 | eqeq1i | ⊢ ( 𝐷  =  ∅  ↔  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 }  =  ∅ ) | 
						
							| 61 |  | eleq2 | ⊢ ( { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 }  =  ∅  →  ( 𝑏  ∈  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 }  ↔  𝑏  ∈  ∅ ) ) | 
						
							| 62 | 60 61 | sylbi | ⊢ ( 𝐷  =  ∅  →  ( 𝑏  ∈  { 𝑧  ∈  𝐴  ∣  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑧 }  ↔  𝑏  ∈  ∅ ) ) | 
						
							| 63 | 59 62 | bitr3id | ⊢ ( 𝐷  =  ∅  →  ( ( 𝑏  ∈  𝐴  ∧  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑏 )  ↔  𝑏  ∈  ∅ ) ) | 
						
							| 64 | 63 | biimpd | ⊢ ( 𝐷  =  ∅  →  ( ( 𝑏  ∈  𝐴  ∧  ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑏 )  →  𝑏  ∈  ∅ ) ) | 
						
							| 65 | 64 | expdimp | ⊢ ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  →  ( ∀ 𝑔  ∈  ( 𝐹  “  𝑥 ) 𝑔 𝑅 𝑏  →  𝑏  ∈  ∅ ) ) | 
						
							| 66 | 56 65 | biimtrid | ⊢ ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) 𝑟 𝑅 𝑏  →  𝑏  ∈  ∅ ) ) | 
						
							| 67 | 54 66 | sylan9r | ⊢ ( ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  ∧  ( ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  ∧  𝑎 𝑅 𝑏 ) )  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  𝑏  ∈  ∅ ) ) | 
						
							| 68 | 67 | exp32 | ⊢ ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  →  ( ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  →  ( 𝑎 𝑅 𝑏  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  𝑏  ∈  ∅ ) ) ) ) | 
						
							| 69 | 68 | com34 | ⊢ ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  →  ( ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) )  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ( 𝑎 𝑅 𝑏  →  𝑏  ∈  ∅ ) ) ) ) | 
						
							| 70 | 69 | imp31 | ⊢ ( ( ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  ∧  ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) ) )  ∧  ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) )  →  ( 𝑎 𝑅 𝑏  →  𝑏  ∈  ∅ ) ) | 
						
							| 71 | 37 70 | mtoi | ⊢ ( ( ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  ∧  ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 ) ) )  ∧  ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) )  →  ¬  𝑎 𝑅 𝑏 ) | 
						
							| 72 | 71 | exp42 | ⊢ ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  →  ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐴 )  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ¬  𝑎 𝑅 𝑏 ) ) ) ) | 
						
							| 73 | 72 | exp4a | ⊢ ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  →  ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ( 𝑎  ∈  𝐴  →  ( 𝑏  ∈  𝐴  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ¬  𝑎 𝑅 𝑏 ) ) ) ) ) | 
						
							| 74 | 73 | com34 | ⊢ ( ( 𝐷  =  ∅  ∧  𝑏  ∈  𝐴 )  →  ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ( 𝑏  ∈  𝐴  →  ( 𝑎  ∈  𝐴  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ¬  𝑎 𝑅 𝑏 ) ) ) ) ) | 
						
							| 75 | 74 | ex | ⊢ ( 𝐷  =  ∅  →  ( 𝑏  ∈  𝐴  →  ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ( 𝑏  ∈  𝐴  →  ( 𝑎  ∈  𝐴  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ¬  𝑎 𝑅 𝑏 ) ) ) ) ) ) | 
						
							| 76 | 75 | com4r | ⊢ ( 𝑏  ∈  𝐴  →  ( 𝐷  =  ∅  →  ( 𝑏  ∈  𝐴  →  ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ( 𝑎  ∈  𝐴  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ¬  𝑎 𝑅 𝑏 ) ) ) ) ) ) | 
						
							| 77 | 76 | pm2.43a | ⊢ ( 𝑏  ∈  𝐴  →  ( 𝐷  =  ∅  →  ( ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) )  →  ( 𝑎  ∈  𝐴  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ¬  𝑎 𝑅 𝑏 ) ) ) ) ) | 
						
							| 78 | 77 | impd | ⊢ ( 𝑏  ∈  𝐴  →  ( ( 𝐷  =  ∅  ∧  ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) )  →  ( 𝑎  ∈  𝐴  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ¬  𝑎 𝑅 𝑏 ) ) ) ) | 
						
							| 79 | 78 | com4l | ⊢ ( ( 𝐷  =  ∅  ∧  ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) )  →  ( 𝑎  ∈  𝐴  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ( 𝑏  ∈  𝐴  →  ¬  𝑎 𝑅 𝑏 ) ) ) ) | 
						
							| 80 | 79 | impd | ⊢ ( ( 𝐷  =  ∅  ∧  ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) )  →  ( ( 𝑎  ∈  𝐴  ∧  ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) )  →  ( 𝑏  ∈  𝐴  →  ¬  𝑎 𝑅 𝑏 ) ) ) | 
						
							| 81 | 80 | ralrimdv | ⊢ ( ( 𝐷  =  ∅  ∧  ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) )  →  ( ( 𝑎  ∈  𝐴  ∧  ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) )  →  ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) | 
						
							| 82 | 81 | expd | ⊢ ( ( 𝐷  =  ∅  ∧  ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) )  →  ( 𝑎  ∈  𝐴  →  ( ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) ) | 
						
							| 83 | 82 | reximdvai | ⊢ ( ( 𝐷  =  ∅  ∧  ( 𝑅  Po  𝐴  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) )  →  ( ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) | 
						
							| 84 | 83 | exp32 | ⊢ ( 𝐷  =  ∅  →  ( 𝑅  Po  𝐴  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) ) ) | 
						
							| 85 | 84 | com12 | ⊢ ( 𝑅  Po  𝐴  →  ( 𝐷  =  ∅  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  →  ( 𝐷  =  ∅  →  ( ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) ) ) | 
						
							| 87 | 86 | imp32 | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  ( 𝐷  =  ∅  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) )  →  ( ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  ( 𝐹  “  𝑥 ) ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) | 
						
							| 88 | 36 87 | mpd | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  ( 𝐷  =  ∅  ∧  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ ) ) )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) | 
						
							| 89 | 88 | exp45 | ⊢ ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  →  ( 𝐷  =  ∅  →  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  →  ( ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) ) ) | 
						
							| 90 | 89 | com23 | ⊢ ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  →  ( ( 𝑤  We  𝐴  ∧  𝑥  ∈  On )  →  ( 𝐷  =  ∅  →  ( ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) ) ) | 
						
							| 91 | 90 | expdimp | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  𝑤  We  𝐴 )  →  ( 𝑥  ∈  On  →  ( 𝐷  =  ∅  →  ( ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) ) ) | 
						
							| 92 | 91 | imp4a | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  𝑤  We  𝐴 )  →  ( 𝑥  ∈  On  →  ( ( 𝐷  =  ∅  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) ) | 
						
							| 93 | 92 | com3l | ⊢ ( 𝑥  ∈  On  →  ( ( 𝐷  =  ∅  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  𝑤  We  𝐴 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) ) | 
						
							| 94 | 93 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  On ( 𝐷  =  ∅  ∧  ∀ 𝑦  ∈  𝑥 𝐻  ≠  ∅ )  →  ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  𝑤  We  𝐴 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) | 
						
							| 95 | 6 17 94 | 3syl | ⊢ ( ( 𝑅  Po  𝐴  ∧  𝑤  We  𝐴 )  →  ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  𝑤  We  𝐴 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) | 
						
							| 96 | 95 | adantlr | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  𝑤  We  𝐴 )  →  ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  𝑤  We  𝐴 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) | 
						
							| 97 | 96 | pm2.43i | ⊢ ( ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  ∧  𝑤  We  𝐴 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) | 
						
							| 98 | 97 | expcom | ⊢ ( 𝑤  We  𝐴  →  ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) | 
						
							| 99 | 98 | exlimiv | ⊢ ( ∃ 𝑤 𝑤  We  𝐴  →  ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) | 
						
							| 100 | 5 99 | sylbi | ⊢ ( 𝐴  ∈  dom  card  →  ( ( 𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) ) | 
						
							| 101 | 100 | 3impib | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝑅  Po  𝐴  ∧  ∀ 𝑠 ( ( 𝑠  ⊆  𝐴  ∧  𝑅  Or  𝑠 )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑟  ∈  𝑠 ( 𝑟 𝑅 𝑎  ∨  𝑟  =  𝑎 ) ) )  →  ∃ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ¬  𝑎 𝑅 𝑏 ) |