Metamath Proof Explorer


Theorem zorng

Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of Enderton p. 151. This version of zorn avoids the Axiom of Choice by assuming that A is well-orderable. (Contributed by NM, 12-Aug-2004) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion zorng ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧𝐴 ∧ [] Or 𝑧 ) → 𝑧𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 risset ( 𝑧𝐴 ↔ ∃ 𝑥𝐴 𝑥 = 𝑧 )
2 eqimss2 ( 𝑥 = 𝑧 𝑧𝑥 )
3 unissb ( 𝑧𝑥 ↔ ∀ 𝑢𝑧 𝑢𝑥 )
4 2 3 sylib ( 𝑥 = 𝑧 → ∀ 𝑢𝑧 𝑢𝑥 )
5 vex 𝑥 ∈ V
6 5 brrpss ( 𝑢 [] 𝑥𝑢𝑥 )
7 6 orbi1i ( ( 𝑢 [] 𝑥𝑢 = 𝑥 ) ↔ ( 𝑢𝑥𝑢 = 𝑥 ) )
8 sspss ( 𝑢𝑥 ↔ ( 𝑢𝑥𝑢 = 𝑥 ) )
9 7 8 bitr4i ( ( 𝑢 [] 𝑥𝑢 = 𝑥 ) ↔ 𝑢𝑥 )
10 9 ralbii ( ∀ 𝑢𝑧 ( 𝑢 [] 𝑥𝑢 = 𝑥 ) ↔ ∀ 𝑢𝑧 𝑢𝑥 )
11 4 10 sylibr ( 𝑥 = 𝑧 → ∀ 𝑢𝑧 ( 𝑢 [] 𝑥𝑢 = 𝑥 ) )
12 11 reximi ( ∃ 𝑥𝐴 𝑥 = 𝑧 → ∃ 𝑥𝐴𝑢𝑧 ( 𝑢 [] 𝑥𝑢 = 𝑥 ) )
13 1 12 sylbi ( 𝑧𝐴 → ∃ 𝑥𝐴𝑢𝑧 ( 𝑢 [] 𝑥𝑢 = 𝑥 ) )
14 13 imim2i ( ( ( 𝑧𝐴 ∧ [] Or 𝑧 ) → 𝑧𝐴 ) → ( ( 𝑧𝐴 ∧ [] Or 𝑧 ) → ∃ 𝑥𝐴𝑢𝑧 ( 𝑢 [] 𝑥𝑢 = 𝑥 ) ) )
15 14 alimi ( ∀ 𝑧 ( ( 𝑧𝐴 ∧ [] Or 𝑧 ) → 𝑧𝐴 ) → ∀ 𝑧 ( ( 𝑧𝐴 ∧ [] Or 𝑧 ) → ∃ 𝑥𝐴𝑢𝑧 ( 𝑢 [] 𝑥𝑢 = 𝑥 ) ) )
16 porpss [] Po 𝐴
17 zorn2g ( ( 𝐴 ∈ dom card ∧ [] Po 𝐴 ∧ ∀ 𝑧 ( ( 𝑧𝐴 ∧ [] Or 𝑧 ) → ∃ 𝑥𝐴𝑢𝑧 ( 𝑢 [] 𝑥𝑢 = 𝑥 ) ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦 )
18 16 17 mp3an2 ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧𝐴 ∧ [] Or 𝑧 ) → ∃ 𝑥𝐴𝑢𝑧 ( 𝑢 [] 𝑥𝑢 = 𝑥 ) ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦 )
19 15 18 sylan2 ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧𝐴 ∧ [] Or 𝑧 ) → 𝑧𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦 )
20 vex 𝑦 ∈ V
21 20 brrpss ( 𝑥 [] 𝑦𝑥𝑦 )
22 21 notbii ( ¬ 𝑥 [] 𝑦 ↔ ¬ 𝑥𝑦 )
23 22 ralbii ( ∀ 𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∀ 𝑦𝐴 ¬ 𝑥𝑦 )
24 23 rexbii ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 [] 𝑦 ↔ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )
25 19 24 sylib ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧𝐴 ∧ [] Or 𝑧 ) → 𝑧𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )