| Step |
Hyp |
Ref |
Expression |
| 1 |
|
risset |
⊢ ( ∪ 𝑧 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧 ) |
| 2 |
|
eqimss2 |
⊢ ( 𝑥 = ∪ 𝑧 → ∪ 𝑧 ⊆ 𝑥 ) |
| 3 |
|
unissb |
⊢ ( ∪ 𝑧 ⊆ 𝑥 ↔ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥 ) |
| 4 |
2 3
|
sylib |
⊢ ( 𝑥 = ∪ 𝑧 → ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥 ) |
| 5 |
|
vex |
⊢ 𝑥 ∈ V |
| 6 |
5
|
brrpss |
⊢ ( 𝑢 [⊊] 𝑥 ↔ 𝑢 ⊊ 𝑥 ) |
| 7 |
6
|
orbi1i |
⊢ ( ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ↔ ( 𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥 ) ) |
| 8 |
|
sspss |
⊢ ( 𝑢 ⊆ 𝑥 ↔ ( 𝑢 ⊊ 𝑥 ∨ 𝑢 = 𝑥 ) ) |
| 9 |
7 8
|
bitr4i |
⊢ ( ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ↔ 𝑢 ⊆ 𝑥 ) |
| 10 |
9
|
ralbii |
⊢ ( ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ↔ ∀ 𝑢 ∈ 𝑧 𝑢 ⊆ 𝑥 ) |
| 11 |
4 10
|
sylibr |
⊢ ( 𝑥 = ∪ 𝑧 → ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) |
| 12 |
11
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 = ∪ 𝑧 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) |
| 13 |
1 12
|
sylbi |
⊢ ( ∪ 𝑧 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) |
| 14 |
13
|
imim2i |
⊢ ( ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) ) |
| 15 |
14
|
alimi |
⊢ ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) → ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) ) |
| 16 |
|
porpss |
⊢ [⊊] Po 𝐴 |
| 17 |
|
zorn2g |
⊢ ( ( 𝐴 ∈ dom card ∧ [⊊] Po 𝐴 ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ) |
| 18 |
16 17
|
mp3an2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑢 ∈ 𝑧 ( 𝑢 [⊊] 𝑥 ∨ 𝑢 = 𝑥 ) ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ) |
| 19 |
15 18
|
sylan2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ) |
| 20 |
|
vex |
⊢ 𝑦 ∈ V |
| 21 |
20
|
brrpss |
⊢ ( 𝑥 [⊊] 𝑦 ↔ 𝑥 ⊊ 𝑦 ) |
| 22 |
21
|
notbii |
⊢ ( ¬ 𝑥 [⊊] 𝑦 ↔ ¬ 𝑥 ⊊ 𝑦 ) |
| 23 |
22
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 24 |
23
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 [⊊] 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |
| 25 |
19 24
|
sylib |
⊢ ( ( 𝐴 ∈ dom card ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ [⊊] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) |