Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
AC equivalents: well-ordering, Zorn's lemma
zornn0
Metamath Proof Explorer
Description: Variant of Zorn's lemma zorn in which (/) , the union of the empty
chain, is not required to be an element of A . (Contributed by Jeff
Madsen , 5-Jan-2011)
Ref
Expression
Hypothesis
zornn0.1
⊢ 𝐴 ∈ V
Assertion
zornn0
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊ ] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 )
Proof
Step
Hyp
Ref
Expression
1
zornn0.1
⊢ 𝐴 ∈ V
2
numth3
⊢ ( 𝐴 ∈ V → 𝐴 ∈ dom card )
3
1 2
ax-mp
⊢ 𝐴 ∈ dom card
4
zornn0g
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊ ] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 )
5
3 4
mp3an1
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ [⊊ ] Or 𝑧 ) → ∪ 𝑧 ∈ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 )