Metamath Proof Explorer


Theorem zornn0

Description: Variant of Zorn's lemma zorn in which (/) , the union of the empty chain, is not required to be an element of A . (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Hypothesis zornn0.1 𝐴 ∈ V
Assertion zornn0 ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧 ) → 𝑧𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 zornn0.1 𝐴 ∈ V
2 numth3 ( 𝐴 ∈ V → 𝐴 ∈ dom card )
3 1 2 ax-mp 𝐴 ∈ dom card
4 zornn0g ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧 ) → 𝑧𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )
5 3 4 mp3an1 ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ( ( 𝑧𝐴𝑧 ≠ ∅ ∧ [] Or 𝑧 ) → 𝑧𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )