| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp2 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 ) )  →  𝐴  ≠  ∅ ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 ) )  →  𝐴  ∈  dom  card ) | 
						
							| 3 |  | snfi | ⊢ { ∅ }  ∈  Fin | 
						
							| 4 |  | finnum | ⊢ ( { ∅ }  ∈  Fin  →  { ∅ }  ∈  dom  card ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ { ∅ }  ∈  dom  card | 
						
							| 6 |  | unnum | ⊢ ( ( 𝐴  ∈  dom  card  ∧  { ∅ }  ∈  dom  card )  →  ( 𝐴  ∪  { ∅ } )  ∈  dom  card ) | 
						
							| 7 | 2 5 6 | sylancl | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 ) )  →  ( 𝐴  ∪  { ∅ } )  ∈  dom  card ) | 
						
							| 8 |  | uncom | ⊢ ( 𝐴  ∪  { ∅ } )  =  ( { ∅ }  ∪  𝐴 ) | 
						
							| 9 | 8 | sseq2i | ⊢ ( 𝑤  ⊆  ( 𝐴  ∪  { ∅ } )  ↔  𝑤  ⊆  ( { ∅ }  ∪  𝐴 ) ) | 
						
							| 10 |  | ssundif | ⊢ ( 𝑤  ⊆  ( { ∅ }  ∪  𝐴 )  ↔  ( 𝑤  ∖  { ∅ } )  ⊆  𝐴 ) | 
						
							| 11 | 9 10 | bitri | ⊢ ( 𝑤  ⊆  ( 𝐴  ∪  { ∅ } )  ↔  ( 𝑤  ∖  { ∅ } )  ⊆  𝐴 ) | 
						
							| 12 |  | difss | ⊢ ( 𝑤  ∖  { ∅ } )  ⊆  𝑤 | 
						
							| 13 |  | soss | ⊢ ( ( 𝑤  ∖  { ∅ } )  ⊆  𝑤  →  (  [⊊]   Or  𝑤  →   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) ) ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ (  [⊊]   Or  𝑤  →   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) ) | 
						
							| 15 |  | ssdif0 | ⊢ ( 𝑤  ⊆  { ∅ }  ↔  ( 𝑤  ∖  { ∅ } )  =  ∅ ) | 
						
							| 16 |  | uni0b | ⊢ ( ∪  𝑤  =  ∅  ↔  𝑤  ⊆  { ∅ } ) | 
						
							| 17 | 16 | biimpri | ⊢ ( 𝑤  ⊆  { ∅ }  →  ∪  𝑤  =  ∅ ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑤  ⊆  { ∅ }  →  ( ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } )  ↔  ∅  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 19 | 15 18 | sylbir | ⊢ ( ( 𝑤  ∖  { ∅ } )  =  ∅  →  ( ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } )  ↔  ∅  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( ( 𝑤  ∖  { ∅ } )  =  ∅  →  ( ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) )  ↔  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ∪  { ∅ } ) ) ) ) | 
						
							| 21 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 22 | 21 | difexi | ⊢ ( 𝑤  ∖  { ∅ } )  ∈  V | 
						
							| 23 |  | sseq1 | ⊢ ( 𝑧  =  ( 𝑤  ∖  { ∅ } )  →  ( 𝑧  ⊆  𝐴  ↔  ( 𝑤  ∖  { ∅ } )  ⊆  𝐴 ) ) | 
						
							| 24 |  | neeq1 | ⊢ ( 𝑧  =  ( 𝑤  ∖  { ∅ } )  →  ( 𝑧  ≠  ∅  ↔  ( 𝑤  ∖  { ∅ } )  ≠  ∅ ) ) | 
						
							| 25 |  | soeq2 | ⊢ ( 𝑧  =  ( 𝑤  ∖  { ∅ } )  →  (  [⊊]   Or  𝑧  ↔   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) ) ) | 
						
							| 26 | 23 24 25 | 3anbi123d | ⊢ ( 𝑧  =  ( 𝑤  ∖  { ∅ } )  →  ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  ↔  ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧  ( 𝑤  ∖  { ∅ } )  ≠  ∅  ∧   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) ) ) ) | 
						
							| 27 |  | unieq | ⊢ ( 𝑧  =  ( 𝑤  ∖  { ∅ } )  →  ∪  𝑧  =  ∪  ( 𝑤  ∖  { ∅ } ) ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑧  =  ( 𝑤  ∖  { ∅ } )  →  ( ∪  𝑧  ∈  𝐴  ↔  ∪  ( 𝑤  ∖  { ∅ } )  ∈  𝐴 ) ) | 
						
							| 29 | 26 28 | imbi12d | ⊢ ( 𝑧  =  ( 𝑤  ∖  { ∅ } )  →  ( ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  ↔  ( ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧  ( 𝑤  ∖  { ∅ } )  ≠  ∅  ∧   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) )  →  ∪  ( 𝑤  ∖  { ∅ } )  ∈  𝐴 ) ) ) | 
						
							| 30 | 22 29 | spcv | ⊢ ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ( ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧  ( 𝑤  ∖  { ∅ } )  ≠  ∅  ∧   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) )  →  ∪  ( 𝑤  ∖  { ∅ } )  ∈  𝐴 ) ) | 
						
							| 31 | 30 | com12 | ⊢ ( ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧  ( 𝑤  ∖  { ∅ } )  ≠  ∅  ∧   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) )  →  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∪  ( 𝑤  ∖  { ∅ } )  ∈  𝐴 ) ) | 
						
							| 32 | 31 | 3expa | ⊢ ( ( ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧  ( 𝑤  ∖  { ∅ } )  ≠  ∅ )  ∧   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) )  →  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∪  ( 𝑤  ∖  { ∅ } )  ∈  𝐴 ) ) | 
						
							| 33 | 32 | an32s | ⊢ ( ( ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) )  ∧  ( 𝑤  ∖  { ∅ } )  ≠  ∅ )  →  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∪  ( 𝑤  ∖  { ∅ } )  ∈  𝐴 ) ) | 
						
							| 34 |  | unidif0 | ⊢ ∪  ( 𝑤  ∖  { ∅ } )  =  ∪  𝑤 | 
						
							| 35 | 34 | eleq1i | ⊢ ( ∪  ( 𝑤  ∖  { ∅ } )  ∈  𝐴  ↔  ∪  𝑤  ∈  𝐴 ) | 
						
							| 36 |  | elun1 | ⊢ ( ∪  𝑤  ∈  𝐴  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) | 
						
							| 37 | 35 36 | sylbi | ⊢ ( ∪  ( 𝑤  ∖  { ∅ } )  ∈  𝐴  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) | 
						
							| 38 | 33 37 | syl6 | ⊢ ( ( ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) )  ∧  ( 𝑤  ∖  { ∅ } )  ≠  ∅ )  →  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 39 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 40 | 39 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 41 |  | elun2 | ⊢ ( ∅  ∈  { ∅ }  →  ∅  ∈  ( 𝐴  ∪  { ∅ } ) ) | 
						
							| 42 | 40 41 | ax-mp | ⊢ ∅  ∈  ( 𝐴  ∪  { ∅ } ) | 
						
							| 43 | 42 | 2a1i | ⊢ ( ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) )  →  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∅  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 44 | 20 38 43 | pm2.61ne | ⊢ ( ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧   [⊊]   Or  ( 𝑤  ∖  { ∅ } ) )  →  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 45 | 14 44 | sylan2 | ⊢ ( ( ( 𝑤  ∖  { ∅ } )  ⊆  𝐴  ∧   [⊊]   Or  𝑤 )  →  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 46 | 11 45 | sylanb | ⊢ ( ( 𝑤  ⊆  ( 𝐴  ∪  { ∅ } )  ∧   [⊊]   Or  𝑤 )  →  ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 47 | 46 | com12 | ⊢ ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ( ( 𝑤  ⊆  ( 𝐴  ∪  { ∅ } )  ∧   [⊊]   Or  𝑤 )  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 48 | 47 | alrimiv | ⊢ ( ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 )  →  ∀ 𝑤 ( ( 𝑤  ⊆  ( 𝐴  ∪  { ∅ } )  ∧   [⊊]   Or  𝑤 )  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 49 | 48 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 ) )  →  ∀ 𝑤 ( ( 𝑤  ⊆  ( 𝐴  ∪  { ∅ } )  ∧   [⊊]   Or  𝑤 )  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) ) | 
						
							| 50 |  | zorng | ⊢ ( ( ( 𝐴  ∪  { ∅ } )  ∈  dom  card  ∧  ∀ 𝑤 ( ( 𝑤  ⊆  ( 𝐴  ∪  { ∅ } )  ∧   [⊊]   Or  𝑤 )  →  ∪  𝑤  ∈  ( 𝐴  ∪  { ∅ } ) ) )  →  ∃ 𝑥  ∈  ( 𝐴  ∪  { ∅ } ) ∀ 𝑦  ∈  ( 𝐴  ∪  { ∅ } ) ¬  𝑥  ⊊  𝑦 ) | 
						
							| 51 | 7 49 50 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 ) )  →  ∃ 𝑥  ∈  ( 𝐴  ∪  { ∅ } ) ∀ 𝑦  ∈  ( 𝐴  ∪  { ∅ } ) ¬  𝑥  ⊊  𝑦 ) | 
						
							| 52 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  { ∅ } ) | 
						
							| 53 |  | ssralv | ⊢ ( 𝐴  ⊆  ( 𝐴  ∪  { ∅ } )  →  ( ∀ 𝑦  ∈  ( 𝐴  ∪  { ∅ } ) ¬  𝑥  ⊊  𝑦  →  ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) ) | 
						
							| 54 | 52 53 | ax-mp | ⊢ ( ∀ 𝑦  ∈  ( 𝐴  ∪  { ∅ } ) ¬  𝑥  ⊊  𝑦  →  ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) | 
						
							| 55 | 54 | reximi | ⊢ ( ∃ 𝑥  ∈  ( 𝐴  ∪  { ∅ } ) ∀ 𝑦  ∈  ( 𝐴  ∪  { ∅ } ) ¬  𝑥  ⊊  𝑦  →  ∃ 𝑥  ∈  ( 𝐴  ∪  { ∅ } ) ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) | 
						
							| 56 |  | rexun | ⊢ ( ∃ 𝑥  ∈  ( 𝐴  ∪  { ∅ } ) ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦  ↔  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦  ∨  ∃ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) ) | 
						
							| 57 |  | simpr | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) | 
						
							| 58 |  | simpr | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 )  →  ∃ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) | 
						
							| 59 |  | psseq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ⊊  𝑦  ↔  ∅  ⊊  𝑦 ) ) | 
						
							| 60 |  | 0pss | ⊢ ( ∅  ⊊  𝑦  ↔  𝑦  ≠  ∅ ) | 
						
							| 61 | 59 60 | bitrdi | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ⊊  𝑦  ↔  𝑦  ≠  ∅ ) ) | 
						
							| 62 | 61 | notbid | ⊢ ( 𝑥  =  ∅  →  ( ¬  𝑥  ⊊  𝑦  ↔  ¬  𝑦  ≠  ∅ ) ) | 
						
							| 63 |  | nne | ⊢ ( ¬  𝑦  ≠  ∅  ↔  𝑦  =  ∅ ) | 
						
							| 64 | 62 63 | bitrdi | ⊢ ( 𝑥  =  ∅  →  ( ¬  𝑥  ⊊  𝑦  ↔  𝑦  =  ∅ ) ) | 
						
							| 65 | 64 | ralbidv | ⊢ ( 𝑥  =  ∅  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦  ↔  ∀ 𝑦  ∈  𝐴 𝑦  =  ∅ ) ) | 
						
							| 66 | 39 65 | rexsn | ⊢ ( ∃ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦  ↔  ∀ 𝑦  ∈  𝐴 𝑦  =  ∅ ) | 
						
							| 67 |  | eqsn | ⊢ ( 𝐴  ≠  ∅  →  ( 𝐴  =  { ∅ }  ↔  ∀ 𝑦  ∈  𝐴 𝑦  =  ∅ ) ) | 
						
							| 68 | 67 | biimpar | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∀ 𝑦  ∈  𝐴 𝑦  =  ∅ )  →  𝐴  =  { ∅ } ) | 
						
							| 69 | 66 68 | sylan2b | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 )  →  𝐴  =  { ∅ } ) | 
						
							| 70 | 58 69 | rexeqtrrdv | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) | 
						
							| 71 | 57 70 | jaodan | ⊢ ( ( 𝐴  ≠  ∅  ∧  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦  ∨  ∃ 𝑥  ∈  { ∅ } ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) | 
						
							| 72 | 56 71 | sylan2b | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ( 𝐴  ∪  { ∅ } ) ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) | 
						
							| 73 | 55 72 | sylan2 | ⊢ ( ( 𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ( 𝐴  ∪  { ∅ } ) ∀ 𝑦  ∈  ( 𝐴  ∪  { ∅ } ) ¬  𝑥  ⊊  𝑦 )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) | 
						
							| 74 | 1 51 73 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐴  ≠  ∅  ∧  ∀ 𝑧 ( ( 𝑧  ⊆  𝐴  ∧  𝑧  ≠  ∅  ∧   [⊊]   Or  𝑧 )  →  ∪  𝑧  ∈  𝐴 ) )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  ⊊  𝑦 ) |