Step |
Hyp |
Ref |
Expression |
1 |
|
zprod.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
zprod.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
zprod.3 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ) |
4 |
|
zprod.4 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) |
5 |
|
zprod.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
6 |
|
zprod.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
7 |
|
3simpb |
⊢ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑖 if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) |
9 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 ∈ 𝐴 |
10 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 |
11 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
12 |
9 10 11
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑖 ∈ 𝐴 , ⦋ 𝑖 / 𝑘 ⦌ 𝐵 , 1 ) |
13 |
|
eleq1w |
⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴 ) ) |
14 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
15 |
13 14
|
ifbieq1d |
⊢ ( 𝑘 = 𝑖 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = if ( 𝑖 ∈ 𝐴 , ⦋ 𝑖 / 𝑘 ⦌ 𝐵 , 1 ) ) |
16 |
8 12 15
|
cbvmpt |
⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑖 ∈ ℤ ↦ if ( 𝑖 ∈ 𝐴 , ⦋ 𝑖 / 𝑘 ⦌ 𝐵 , 1 ) ) |
17 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝜑 ) |
18 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
19 |
10
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ |
20 |
14
|
eleq1d |
⊢ ( 𝑘 = 𝑖 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
21 |
19 20
|
rspc |
⊢ ( 𝑖 ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
22 |
18 21
|
syl5 |
⊢ ( 𝑖 ∈ 𝐴 → ( 𝜑 → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
23 |
17 22
|
mpan9 |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
24 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝑚 ∈ ℤ ) |
25 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝑀 ∈ ℤ ) |
26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) |
27 |
4 1
|
sseqtrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
29 |
16 23 24 25 26 28
|
prodrb |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → ( seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ↔ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
30 |
29
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) ∧ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) → ( seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
31 |
30
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
32 |
7 31
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
33 |
32
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
34 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
35 |
|
zssre |
⊢ ℤ ⊆ ℝ |
36 |
34 35
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
37 |
1 36
|
eqsstri |
⊢ 𝑍 ⊆ ℝ |
38 |
4 37
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝐴 ⊆ ℝ ) |
40 |
|
ltso |
⊢ < Or ℝ |
41 |
|
soss |
⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) |
42 |
39 40 41
|
mpisyl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → < Or 𝐴 ) |
43 |
|
fzfi |
⊢ ( 1 ... 𝑚 ) ∈ Fin |
44 |
|
ovex |
⊢ ( 1 ... 𝑚 ) ∈ V |
45 |
44
|
f1oen |
⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
46 |
45
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 1 ... 𝑚 ) ≈ 𝐴 ) |
47 |
46
|
ensymd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝐴 ≈ ( 1 ... 𝑚 ) ) |
48 |
|
enfii |
⊢ ( ( ( 1 ... 𝑚 ) ∈ Fin ∧ 𝐴 ≈ ( 1 ... 𝑚 ) ) → 𝐴 ∈ Fin ) |
49 |
43 47 48
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → 𝐴 ∈ Fin ) |
50 |
|
fz1iso |
⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
51 |
42 49 50
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
52 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝜑 ) |
53 |
52 22
|
mpan9 |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) ∧ 𝑖 ∈ 𝐴 ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
54 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑗 ) ) |
55 |
54
|
csbeq1d |
⊢ ( 𝑛 = 𝑗 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
56 |
|
csbcow |
⊢ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 |
57 |
55 56
|
eqtr4di |
⊢ ( 𝑛 = 𝑗 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
58 |
57
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
59 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑖 ⦌ ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
60 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
61 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑀 ∈ ℤ ) |
62 |
27
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
63 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) |
64 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) |
65 |
16 53 58 59 60 61 62 63 64
|
prodmolem2a |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) ) ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
66 |
65
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
67 |
66
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( ∃ 𝑔 𝑔 Isom < , < ( ( 1 ... ( ♯ ‘ 𝐴 ) ) , 𝐴 ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
68 |
51 67
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
69 |
|
breq2 |
⊢ ( 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) → ( seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ↔ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
70 |
68 69
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) → ( 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
71 |
70
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
72 |
71
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
73 |
72
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
74 |
33 73
|
jaod |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
75 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → 𝑀 ∈ ℤ ) |
76 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → 𝐴 ⊆ 𝑍 ) |
77 |
1
|
eleq2i |
⊢ ( 𝑛 ∈ 𝑍 ↔ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
78 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ℤ ) |
80 |
|
uztrn |
⊢ ( ( 𝑧 ∈ ( ℤ≥ ‘ 𝑛 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
81 |
80
|
ancoms |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
82 |
1
|
eleq2i |
⊢ ( 𝑘 ∈ 𝑍 ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
83 |
1 34
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
84 |
83
|
sseli |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
85 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
86 |
85
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
87 |
86 6
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
88 |
87
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) ) |
89 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) |
90 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
91 |
89 90
|
eqeltrdi |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
92 |
88 91
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
93 |
|
eqid |
⊢ ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
94 |
93
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
95 |
84 92 94
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
96 |
5 95
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) ) |
97 |
82 96
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) ) |
98 |
97
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) ) |
99 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) |
100 |
99
|
nfeq2 |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑧 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) |
101 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑧 ) ) |
102 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) ) |
103 |
101 102
|
eqeq12d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑧 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) ) ) |
104 |
100 103
|
rspc |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) ) ) |
105 |
98 104
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) ) |
106 |
81 105
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) ) |
107 |
106
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) ) |
108 |
79 107
|
seqfeq |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → seq 𝑛 ( · , 𝐹 ) = seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ) |
109 |
108
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
110 |
109
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
111 |
110
|
exbidv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
112 |
77 111
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
113 |
112
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , 𝐹 ) ⇝ 𝑦 ) ↔ ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
114 |
3 113
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
115 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
116 |
|
simpr |
⊢ ( ( 𝜑 ∧ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) |
117 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑀 ) ) |
118 |
117 1
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( ℤ≥ ‘ 𝑚 ) = 𝑍 ) |
119 |
118
|
sseq2d |
⊢ ( 𝑚 = 𝑀 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ 𝑍 ) ) |
120 |
118
|
rexeqdv |
⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
121 |
|
seqeq1 |
⊢ ( 𝑚 = 𝑀 → seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ) |
122 |
121
|
breq1d |
⊢ ( 𝑚 = 𝑀 → ( seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ↔ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
123 |
119 120 122
|
3anbi123d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ 𝑍 ∧ ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) ) |
124 |
123
|
rspcev |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 ⊆ 𝑍 ∧ ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
125 |
75 76 115 116 124
|
syl13anc |
⊢ ( ( 𝜑 ∧ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
126 |
125
|
orcd |
⊢ ( ( 𝜑 ∧ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
127 |
126
|
ex |
⊢ ( 𝜑 → ( seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) ) |
128 |
74 127
|
impbid |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ) |
129 |
95 5
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
130 |
82 129
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
131 |
130
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
132 |
99
|
nfeq1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) |
133 |
102 101
|
eqeq12d |
⊢ ( 𝑘 = 𝑧 → ( ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ↔ ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
134 |
132 133
|
rspc |
⊢ ( 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
135 |
131 134
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
136 |
2 135
|
seqfeq |
⊢ ( 𝜑 → seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq 𝑀 ( · , 𝐹 ) ) |
137 |
136
|
breq1d |
⊢ ( 𝜑 → ( seq 𝑀 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
138 |
128 137
|
bitrd |
⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ↔ seq 𝑀 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
139 |
138
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) = ( ℩ 𝑥 seq 𝑀 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
140 |
|
df-prod |
⊢ ∏ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ∧ seq 𝑚 ( · , ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
141 |
|
df-fv |
⊢ ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = ( ℩ 𝑥 seq 𝑀 ( · , 𝐹 ) ⇝ 𝑥 ) |
142 |
139 140 141
|
3eqtr4g |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |