Metamath Proof Explorer


Theorem zprodn0

Description: Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017)

Ref Expression
Hypotheses zprodn0.1 𝑍 = ( ℤ𝑀 )
zprodn0.2 ( 𝜑𝑀 ∈ ℤ )
zprodn0.3 ( 𝜑𝑋 ≠ 0 )
zprodn0.4 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 )
zprodn0.5 ( 𝜑𝐴𝑍 )
zprodn0.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = if ( 𝑘𝐴 , 𝐵 , 1 ) )
zprodn0.7 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
Assertion zprodn0 ( 𝜑 → ∏ 𝑘𝐴 𝐵 = 𝑋 )

Proof

Step Hyp Ref Expression
1 zprodn0.1 𝑍 = ( ℤ𝑀 )
2 zprodn0.2 ( 𝜑𝑀 ∈ ℤ )
3 zprodn0.3 ( 𝜑𝑋 ≠ 0 )
4 zprodn0.4 ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 )
5 zprodn0.5 ( 𝜑𝐴𝑍 )
6 zprodn0.6 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = if ( 𝑘𝐴 , 𝐵 , 1 ) )
7 zprodn0.7 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
8 1 2 4 3 ntrivcvgn0 ( 𝜑 → ∃ 𝑚𝑍𝑥 ( 𝑥 ≠ 0 ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) )
9 1 2 8 5 6 7 zprod ( 𝜑 → ∏ 𝑘𝐴 𝐵 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) )
10 fclim ⇝ : dom ⇝ ⟶ ℂ
11 ffun ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ )
12 10 11 ax-mp Fun ⇝
13 funbrfv ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) )
14 12 4 13 mpsyl ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 )
15 9 14 eqtrd ( 𝜑 → ∏ 𝑘𝐴 𝐵 = 𝑋 )