Step |
Hyp |
Ref |
Expression |
1 |
|
zprodn0.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
zprodn0.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
zprodn0.3 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
4 |
|
zprodn0.4 |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 ) |
5 |
|
zprodn0.5 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) |
6 |
|
zprodn0.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
7 |
|
zprodn0.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
8 |
1 2 4 3
|
ntrivcvgn0 |
⊢ ( 𝜑 → ∃ 𝑚 ∈ 𝑍 ∃ 𝑥 ( 𝑥 ≠ 0 ∧ seq 𝑚 ( · , 𝐹 ) ⇝ 𝑥 ) ) |
9 |
1 2 8 5 6 7
|
zprod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) ) |
10 |
|
fclim |
⊢ ⇝ : dom ⇝ ⟶ ℂ |
11 |
|
ffun |
⊢ ( ⇝ : dom ⇝ ⟶ ℂ → Fun ⇝ ) |
12 |
10 11
|
ax-mp |
⊢ Fun ⇝ |
13 |
|
funbrfv |
⊢ ( Fun ⇝ → ( seq 𝑀 ( · , 𝐹 ) ⇝ 𝑋 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) ) |
14 |
12 4 13
|
mpsyl |
⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( · , 𝐹 ) ) = 𝑋 ) |
15 |
9 14
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 𝑋 ) |