| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zprodn0.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | zprodn0.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | zprodn0.3 | ⊢ ( 𝜑  →  𝑋  ≠  0 ) | 
						
							| 4 |  | zprodn0.4 | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 )  ⇝  𝑋 ) | 
						
							| 5 |  | zprodn0.5 | ⊢ ( 𝜑  →  𝐴  ⊆  𝑍 ) | 
						
							| 6 |  | zprodn0.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) | 
						
							| 7 |  | zprodn0.7 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 8 | 1 2 4 3 | ntrivcvgn0 | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  𝑍 ∃ 𝑥 ( 𝑥  ≠  0  ∧  seq 𝑚 (  ·  ,  𝐹 )  ⇝  𝑥 ) ) | 
						
							| 9 | 1 2 8 5 6 7 | zprod | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  =  (  ⇝  ‘ seq 𝑀 (  ·  ,  𝐹 ) ) ) | 
						
							| 10 |  | fclim | ⊢  ⇝  : dom   ⇝  ⟶ ℂ | 
						
							| 11 |  | ffun | ⊢ (  ⇝  : dom   ⇝  ⟶ ℂ  →  Fun   ⇝  ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ Fun   ⇝ | 
						
							| 13 |  | funbrfv | ⊢ ( Fun   ⇝   →  ( seq 𝑀 (  ·  ,  𝐹 )  ⇝  𝑋  →  (  ⇝  ‘ seq 𝑀 (  ·  ,  𝐹 ) )  =  𝑋 ) ) | 
						
							| 14 | 12 4 13 | mpsyl | ⊢ ( 𝜑  →  (  ⇝  ‘ seq 𝑀 (  ·  ,  𝐹 ) )  =  𝑋 ) | 
						
							| 15 | 9 14 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  =  𝑋 ) |