Metamath Proof Explorer


Theorem zq

Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002) (Proof shortened by Steven Nguyen, 23-Mar-2023)

Ref Expression
Assertion zq ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ )

Proof

Step Hyp Ref Expression
1 zcn ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ )
2 1 div1d ( 𝐴 ∈ ℤ → ( 𝐴 / 1 ) = 𝐴 )
3 1nn 1 ∈ ℕ
4 znq ( ( 𝐴 ∈ ℤ ∧ 1 ∈ ℕ ) → ( 𝐴 / 1 ) ∈ ℚ )
5 3 4 mpan2 ( 𝐴 ∈ ℤ → ( 𝐴 / 1 ) ∈ ℚ )
6 2 5 eqeltrrd ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ )