Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
zre
Next ⟩
zcn
Metamath Proof Explorer
Ascii
Structured
Theorem
zre
Description:
An integer is a real.
(Contributed by
NM
, 8-Jan-2002)
Ref
Expression
Assertion
zre
⊢
(
𝑁
∈ ℤ →
𝑁
∈ ℝ )
Proof
Step
Hyp
Ref
Expression
1
elz
⊢
(
𝑁
∈ ℤ ↔ (
𝑁
∈ ℝ ∧ (
𝑁
= 0 ∨
𝑁
∈ ℕ ∨ -
𝑁
∈ ℕ ) ) )
2
1
simplbi
⊢
(
𝑁
∈ ℤ →
𝑁
∈ ℝ )