Metamath Proof Explorer


Theorem zred

Description: An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis zred.1 ( 𝜑𝐴 ∈ ℤ )
Assertion zred ( 𝜑𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 zred.1 ( 𝜑𝐴 ∈ ℤ )
2 zssre ℤ ⊆ ℝ
3 2 1 sselid ( 𝜑𝐴 ∈ ℝ )