Metamath Proof Explorer


Theorem zrh0

Description: Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses zrh0.l 𝐿 = ( ℤRHom ‘ 𝑅 )
zrh0.z 0 = ( 0g𝑅 )
Assertion zrh0 ( 𝑅 ∈ Ring → ( 𝐿 ‘ 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 zrh0.l 𝐿 = ( ℤRHom ‘ 𝑅 )
2 zrh0.z 0 = ( 0g𝑅 )
3 1 zrhrhm ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) )
4 rhmghm ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) )
5 zring0 0 = ( 0g ‘ ℤring )
6 5 2 ghmid ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) → ( 𝐿 ‘ 0 ) = 0 )
7 3 4 6 3syl ( 𝑅 ∈ Ring → ( 𝐿 ‘ 0 ) = 0 )