Metamath Proof Explorer


Theorem zrh1

Description: Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses zrh1.l 𝐿 = ( ℤRHom ‘ 𝑅 )
zrh1.o 1 = ( 1r𝑅 )
Assertion zrh1 ( 𝑅 ∈ Ring → ( 𝐿 ‘ 1 ) = 1 )

Proof

Step Hyp Ref Expression
1 zrh1.l 𝐿 = ( ℤRHom ‘ 𝑅 )
2 zrh1.o 1 = ( 1r𝑅 )
3 1 zrhrhm ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) )
4 zring1 1 = ( 1r ‘ ℤring )
5 4 2 rhm1 ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → ( 𝐿 ‘ 1 ) = 1 )
6 3 5 syl ( 𝑅 ∈ Ring → ( 𝐿 ‘ 1 ) = 1 )