Description: Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrh1.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| zrh1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | zrh1 | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 1 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrh1.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 2 | zrh1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 3 | 1 | zrhrhm | ⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
| 4 | zring1 | ⊢ 1 = ( 1r ‘ ℤring ) | |
| 5 | 4 2 | rhm1 | ⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → ( 𝐿 ‘ 1 ) = 1 ) |
| 6 | 3 5 | syl | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 1 ) = 1 ) |