Metamath Proof Explorer


Theorem zrhcopsgnelbas

Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses zrhpsgnelbas.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
zrhpsgnelbas.s 𝑆 = ( pmSgn ‘ 𝑁 )
zrhpsgnelbas.y 𝑌 = ( ℤRHom ‘ 𝑅 )
Assertion zrhcopsgnelbas ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃 ) → ( ( 𝑌𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 zrhpsgnelbas.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 zrhpsgnelbas.s 𝑆 = ( pmSgn ‘ 𝑁 )
3 zrhpsgnelbas.y 𝑌 = ( ℤRHom ‘ 𝑅 )
4 1 2 cofipsgn ( ( 𝑁 ∈ Fin ∧ 𝑄𝑃 ) → ( ( 𝑌𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆𝑄 ) ) )
5 4 3adant1 ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃 ) → ( ( 𝑌𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆𝑄 ) ) )
6 1 2 3 zrhpsgnelbas ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃 ) → ( 𝑌 ‘ ( 𝑆𝑄 ) ) ∈ ( Base ‘ 𝑅 ) )
7 5 6 eqeltrd ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃 ) → ( ( 𝑌𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) )