Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019) (Proof shortened by AV, 3-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zrhpsgnelbas.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
zrhpsgnelbas.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
zrhpsgnelbas.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | ||
Assertion | zrhcopsgnelbas | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhpsgnelbas.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
2 | zrhpsgnelbas.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
3 | zrhpsgnelbas.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
4 | 1 2 | cofipsgn | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
5 | 4 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ) |
6 | 1 2 3 | zrhpsgnelbas | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) |
7 | 5 6 | eqeltrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ) |